Skip to main content

Statistical Method for Analysis of Interactions Between Chosen Protein and Chondroitin Sulfate in an Aqueous Environment

  • Conference paper
  • First Online:
Perspectives in Dynamical Systems II — Numerical and Analytical Approaches (DSTA 2021)

Abstract

We present the statistical method to study the interaction between a chosen protein and another molecule (e.g., both being components of lubricin found in synovial fluid) in a water environment. The research is performed on the example of univariate time series of chosen features of the dynamics of mucin, which interact with chondroitin sulfate (4 and 6) in four different saline solutions. Our statistical approach is based on recurrence methods to analyze chosen features of molecular dynamics. Such recurrence methods are usually applied to reconstruct the evolution of a molecular system in its reduced phase space, where the most important variables in the process are taken into account. In detail, the analyzed time-series are spitted onto sub-series of records that are expected to carry meaningful information about the system of molecules. Elements of sub-series are splinted by the constant delay-time lag (that is the parameter determined by statistical testing in our case), and the length of sub-series is the embedded dimension parameter (using the Cao method). We use the recurrent plots approach combined with the Shannon entropy approach to analyze the robustness of the sub-series determination. We hypothesize that the robustness of the sub-series determines some specifics of the dynamics of the system of molecules. We analyze rather highly noised features to demonstrate that such features lead to recurrence plots that graphically look similar. From the recurrence plots, the Shannon entropy has been computed. We have, however, demonstrated that the Shannon entropy value is highly dependent on the delay time value for analyzed features. Hence, elaboration of a more precise method of the recurrence plot analysis is required. For this reason, we suggest the random walk method that can be applied to analyze the recurrence plots automatically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Avraham, D., Havlin, S.: Diffusion and reactions in fractals and disordered systems, Cambridge University Press, (2000)

    Book  Google Scholar 

  2. Jumarie, G.: Fractional master equation: non-standard analysis and Liouville–Riemann derivative, Chaos, Solitons & Fractals, 12(13) 2577–2587 (2001)

    Article  MathSciNet  Google Scholar 

  3. Kruszewska, N., Domino, K., Drelich, R., Urbaniak, W., Petelska, A. D.: Interactions between Beta-2-Glycoprotein-1 and Phospholipid Bilayer–A Molecular Dynamic Study, Membranes, 10(12), 396,(2020)

    Article  Google Scholar 

  4. Saxton, M. J.: Wanted: a positive control for anomalous subdiffusion, Biophysical Journal, 103(12), 2411–2422, (2012)

    Article  Google Scholar 

  5. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series, Physica D: Nonlinear Phenomena,110 (1–2), 43–50, (1997)

    Google Scholar 

  6. Marwan, N., Carmen Romano M., Thiel, M., Jürgen, K.: Recurrence plots for the analysis of complex systems, Physics Reports, 438, (5–6), 237–329, (2007)

    Article  MathSciNet  Google Scholar 

  7. Eckmann, J. P., Oliffson-Kamphorst, S., Ruelle, D.: Recurrence plots of dynamical systems, World Scientific Series on Nonlinear Science Series A, 16, 441–446, (1995)

    Article  Google Scholar 

  8. Pinzi, L., Rastelli, G.: Molecular Docking: Shifting Paradigms in Drug Discovery, International Journal of Molecular Sciences, 20, (18), 4331, (2019)

    Google Scholar 

  9. Haken, H.: Synergetics - An Introduction - Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology, Springer-Verlag, (1983)

    Book  Google Scholar 

  10. Klein, J.: Hydration lubrication, Friction, 1, (1), 1–23, (2013)

    Article  Google Scholar 

  11. Lin, W., Klein, J.: Recent progress in cartilage lubrication, Advanced Materials, 33, 2005513, (2021)

    Article  Google Scholar 

  12. Loret, B., Simoes F. M. F.: Articular cartilage with intra- and extrafibrillar waters: a chemo-mechanical model, Mechanics of Materials, 36, (5–6), 515–541, (2004)

    Article  Google Scholar 

  13. Dube, D. H., Prescher, J. A., Quang, C. N., Bertozzi, C. R.: Probing mucin-type O-linked glycosylation in living animals, PNAS, 103(13), 4819–4824,(2006)

    Article  Google Scholar 

  14. Brown, R.B., Hollingsworth, M.A.: Mucin Family of Glycoproteins in Encyclopedia of Biological Chemistry (Second Edition), Academic Press, (2013),

    Google Scholar 

  15. Käsdorf, B. T., Weber, F., Petrou, G., Srivastava, V., Crouzier, T., Lieleg, O.: Mucin-Inspired Lubrication on Hydrophobic Surfaces, Biomacromolecules, 18, 2454–2462 (2017)

    Article  Google Scholar 

  16. Seror, J., Zhu, L., Goldberg, R., Day, A. J., Klein, J.: Supramolecular synergy in the boundary lubrication of synovial joints, Nature communications, 6(1), 1–7, (2015),

    Article  Google Scholar 

  17. Raj, A., Wang, M., Zander, T., Wieland, D. C. F., Liu, X., An, J., Garamus, V. M., Willumeit-Römer, R., Fielden, M., Claesson, P. M., Dėdinaitė, A.: Lubrication synergy: Mixture of hyaluronan and dipalmitoylphosphatidylcholine (DPPC) vesicles, Journal of colloid and interface science, 488, 225–233, (2017)

    Article  Google Scholar 

  18. Dėdinaitė, A.: Biomimetic lubrication, Soft Matter, 8(2), 273–284, (2012)

    Article  Google Scholar 

  19. Dėdinaitė, A., Claesson, P. M.: Synergies in lubrication, Physical Chemistry Chemical Physics, 19(35), 23677–23689, (2017)

    Article  Google Scholar 

  20. Oates, K. M. N., Krause, W. E., Jones, R. L., Colby, R. H.: Rheopexy of synovial fluid and protein aggregation, Journal of the Royal Society Interface, 3, 167–174,(2006)

    Article  Google Scholar 

  21. Gadomski, A., Pawlak, Z., Oloyede, A.: Directed ion transport as virtual cause of some facilitated friction–lubrication mechanism prevailing in articular cartilage: a hypothesis, Tribology Letters, 30(2), 83–90, (2008)

    Article  Google Scholar 

  22. Gadomski, A., Bełdowski, P., Augé II, W. K., Hładyszowski, J., Pawlak, Z., Urbaniak, W.: Toward a governing mechanism of nanoscale articular cartilage (physiologic) lubrication: Smoluchowski-type dynamics in amphiphile proton channels, Acta Phys. Pol. B, 44, (8), 1801–1820, (2013)

    Article  MathSciNet  Google Scholar 

  23. Krieger, E., Vriend, G.: New ways to boost molecular dynamics simulations, Journal of computational chemistry, 36, 996–1007, (2015)

    Article  Google Scholar 

  24. Trott, O., Olson, A.J.: AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading, J. Comput. Chem. (31), 455–461, (2010)

    Google Scholar 

  25. Case, D.A., Babin, V., Berryman, J.T., Betz, R.M., Cai, Q., Cerutti, D.S., Cheatham III, T.E., Darden, T.A., Duke, R.E., Gohlke, H., Goetz, A.W., Gusarov, S., Homeyer, N., Janowski, P., Kaus, J., Kolossváry, I., Kovalenko, A., Lee, T.S., LeGrand, S., Luchko, T., Luo, R., Madej, B., Merz, K.M., Paesani, F., Roe, D.R., Roitberg, A., Sagui, C., Salomon-Ferrer, R., Seabra, G., Simmerling, C.L., Smith, W., Swails, J., Walker, R.C., Wang, J., Wolf, R.M., Wu, X., Kollman, P.A.: AMBER 14, University of California, San Francisco, (2014)

    Google Scholar 

  26. Eckmann, J. P., Kamphorst Oliffson, S., Ruelle, D., Ciliberto, S.: Liapunov exponents from time series, Physical Review A, 34(6), 4971–4979, (1986)

    Article  MathSciNet  Google Scholar 

  27. Peppoloni, L., Lawrence, E.L., Ruffaldi, E., Valero-Cuevas, F. J.: Characterization of the disruption of neural control strategies for dynamic fingertip forces from attractor reconstruction, PloS one, 12(2), e0172025, (2017), publisher=Public Library of Science San Francisco, CA USA

    Google Scholar 

  28. Goswami, B.: A brief introduction to nonlinear time series analysis and recurrence plots, Vibration, 2(4), 332–368, (2019)

    Article  Google Scholar 

  29. Subha, P.D., Joseph, P. K., Acharya U, R., Lim, Choo Min.: EEG signal analysis: a survey, Journal of medical systems, 34(2), 195–212, (2010)

    Google Scholar 

  30. Goswami, B.: A Brief Introduction to Nonlinear Time Series Analysis and Recurrence Plots, Vibration, 2, 332–368, (2019)

    Article  Google Scholar 

  31. Zghidi, H., Walczak, M., Blachowicz, T., Domino, K., Ehrmann, A.: Image processing and analysis of textile fibers by virtual random walk, 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), 717–720, IEEE, (2015)

    Google Scholar 

  32. Ehrmann, A., Błachowicz, T., Domino, K., Aumann, S., Weber, M.O, and Zghidi, H.: Examination of hairiness changes due to washing in knitted fabrics using a random walk approach, Textile Research Journal 85(20), 2147–2154, (2015)

    Article  Google Scholar 

  33. Blachowicz, T., Ehrmann, A., Domino, K.: Statistical analysis of digital images of periodic fibrous structures using generalized Hurst exponent distributions, Physica A: Statistical Mechanics and its Applications 452, 167–177, (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the grant of National Science Centre in Poland (Miniatura Grant) 2019/03/X/ST3/01482 (PW). Calculations were carried out at the Centre of Informatics Tri-city Academic Supercomputer and networK (CI TASK) (PW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weber, P., Bełdowski, P., Gadomski, A., Domino, K., Sionkowski, P., Ledziński, D. (2024). Statistical Method for Analysis of Interactions Between Chosen Protein and Chondroitin Sulfate in an Aqueous Environment. In: Awrejcewicz, J. (eds) Perspectives in Dynamical Systems II — Numerical and Analytical Approaches. DSTA 2021. Springer Proceedings in Mathematics & Statistics, vol 454. Springer, Cham. https://doi.org/10.1007/978-3-031-56496-3_45

Download citation

Publish with us

Policies and ethics