Skip to main content

Investigation of the Wire Arc Direct Energy Deposition-Process and Possible Interactions

  • Conference paper
  • First Online:
Advances in Manufacturing IV (MANUFACTURING 2024)

Abstract

The Wire Arc Direct Energy Deposition (WA-DED) process is highly regarded as part of additive manufacturing. Compared to other additive manufacturing processes, it is characterized above all by its high deposition rate and low system costs. Despite many years of experience in the build-up welding process, WA-DED still holds a number of challenges in terms of process stability. This article analyses the interactions in the WA-DED process. To this end, the process was visualized and described with the help of Structured Analysis and Design Technique (SADT). Building on this, a process Failure Mode and Effects Analysis (FMEA) was presented to identify and priorities risks. Finally, the results of the Taguchi tests were analyzed and visualized. The results illustrate the strong interactions between the influencing factors. These have a material-specific effect on the production results. Each new material composition therefore requires a systematic analysis in order to determine quantitative correlations. In future, these can be supported by machine learning approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deutsches Institut für Normung DIN EN ISO/ASTM 52900:2022-03, Additive Fertigung_- Grundlagen_- Terminologie (ISO/ASTM 52900:2021); Deutsche Fassung EN_ISO/ASTM 52900:2021(52900)

    Google Scholar 

  2. Schmid, C.: Konstruktive Randbedingungen bei Anwendung des WAAM-Verfahrens. In: Lachmayer, R., Rettschlag, K., Kaierle, S. (eds.) Konstruktion für die Additive Fertigung 2019, pp. 203–222. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-61149-4_13

    Chapter  Google Scholar 

  3. Costello, S.C., Cunningham, C.R., Xu, F., et al.: The state-of-the-art of wire arc directed energy deposition (WA-DED) as an additive manufacturing process for large metallic component manufacture. Int. J. Comput. Integr. Manuf. 36, 469–510 (2023). https://doi.org/10.1080/0951192X.2022.2162597

    Article  Google Scholar 

  4. Williams, S.W., Martina, F., Addison, A.C., et al.: Wire + arc additive manufacturing. Mater. Sci. Technol. 32, 641–647 (2016). https://doi.org/10.1179/1743284715Y.0000000073

    Article  Google Scholar 

  5. Lachmayer, R., Lippert, R.B.: Grundlagen. In: Lachmayer, R., Lippert, R.B. (eds.) Entwicklungsmethodik für die Additive Fertigung, pp. 7–20. Springer, Heidelberg (2020)

    Chapter  Google Scholar 

  6. Seifi, M., Salem, A., Beuth, J., et al.: Overview of materials qualification needs for metal additive manufacturing. JOM 68, 747–764 (2016). https://doi.org/10.1007/s11837-015-1810-0

    Article  Google Scholar 

  7. Singh, S.R., Khanna, P.: Wire arc additive manufacturing (WAAM): a new process to shape engineering materials. Mater. Today Proc. 44, 118–128 (2021). https://doi.org/10.1016/j.matpr.2020.08.030

    Article  Google Scholar 

  8. Pattanayak, S., Sahoo, S.K.: Gas metal arc welding based additive manufacturing—a review. CIRP J. Manuf. Sci. Technol. 33, 398–442 (2021). https://doi.org/10.1016/j.cirpj.2021.04.010

    Article  Google Scholar 

  9. Fischer, T.S., Grüger, L., Woll, R.: Modellierung von Einflüssen auf das Wire Arc Additive Manufacturing. I40M 2023 (2023). https://doi.org/10.30844/IM_23-5_53-57

  10. Grüger, L., Fischer, T.S., Woll, R., et al.: Ein Beitrag zur Absicherung der Risiken im Wire Arc Additive Manufacturing Prozess. I40M 2024 (2024). https://doi.org/10.30844/I4SD.24.1.63

  11. Bhadrakali, A.S., Rama Sastry, D.V.A., Prabhu, T.R.: A hybrid approach consisting of multi-objective and multivariate analyses for WAAM specimens. Eng. Res. Express 5, 25006 (2023). https://doi.org/10.1088/2631-8695/acc9fd

    Article  Google Scholar 

  12. Ahmed, F., Robinson, S., Tako, A.A.: Using the structred analysis and design technique (SADT) in simulation conceptual modeling. In: Proceedings of the Winter Simulation Conference 2014, pp. 1038–1049. IEEE (2014)

    Google Scholar 

  13. Automotive Industry Action Group: Verband der Automobilindustrie, FMEA-Handbuch: Fehler-Möglichkeits- und -Einfluss-Analyse: Design FMEA: Prozess FMEA: FMEA-Ergänzung -Monitoring & Systemreaktion, 1. Ausgabe. VDA, Berlin (2019)

    Google Scholar 

  14. Rohrschneider, U.: Risikomanagement in Projekten: Die häufigsten Fallen und Gefahren - die besten Sofortmaßnahmen. Haufe, Freiburg, Berlin, München (2006)

    Google Scholar 

  15. Schneider, M.: Statistische Versuchsplanung. In: Datenanalyse für Naturwissenschaftler, Mediziner und Ingenieure, pp. 255–278. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-61866-0_7

    Chapter  Google Scholar 

  16. Spath, D., Bös, K.: Integration der Qualitäts- und Prüfplanung in die Produktentwicklung und Arbeitsplanung (1994). https://doi.org/10.18419/OPUS-7241

  17. Krottmaier, J.: Versuchsplanung: Der Weg zur Qualität des Jahres 2000, 2. Aufl. Praxiswisssen für Ingenieure. Verl. TÜV Rheinland; Verl. Industrielle Organisation, Köln, Zürich (1990)

    Google Scholar 

  18. Toutenburg, H., Knöfel, P.: Six Sigma. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-85138-7

    Book  Google Scholar 

  19. APIS Informationstechnologien GmbH: IQ-FMEA. APIS Informationstechnologien GmbH (2023)

    Google Scholar 

  20. Stoesser, K.R.: Ausgewählte Methoden, Tools und Vorgehensweisen. In: Stoesser, K.R. (ed.) Prozessoptimierung für produzierende Unternehmen, pp. 45–109. Springer Fachmedien Wiesbaden, Wiesbaden (2019)

    Chapter  Google Scholar 

  21. Lachmayer, R., Lippert, R.B. (eds.): Entwicklungsmethodik für die Additive Fertigung. Springer, Heidelberg (2020)

    Google Scholar 

  22. Kumar, P., Singh, R.K.R., Sharma, S.K.: Effect of welding parameters on bead characteristics and mechanical properties of wire and arc additive manufactured inconel 718. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 237, 1668–1691 (2023). https://doi.org/10.1177/09544062221133035

    Article  Google Scholar 

  23. Koli, Y., Aravindan, S., Rao, P.V.: Influence of heat input on the evolution of δ-ferrite grain morphology of SS308L fabricated using WAAM-CMT. Mater Charact 194, 112363 (2022). https://doi.org/10.1016/j.matchar.2022.112363

    Article  Google Scholar 

  24. Venkata Rao, K., Parimi, S., Suvarna Raju, L., et al.: Modelling and optimization of weld bead geometry in robotic gas metal arc-based additive manufacturing using machine learning, finite-element modelling and graph theory and matrix approach. Soft. Comput. 26, 3385–3399 (2022). https://doi.org/10.1007/s00500-022-06749-x

    Article  Google Scholar 

  25. Xiao, X., Waddell, C., Hamilton, C., et al.: Quality prediction and control in wire arc additive manufacturing via novel machine learning framework. Micromachines (Basel) 13 (2022). https://doi.org/10.3390/mi13010137

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Grüger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grüger, L., Fischer, T.S., Woll, R. (2024). Investigation of the Wire Arc Direct Energy Deposition-Process and Possible Interactions. In: Gapiński, B., Ciszak, O., Ivanov, V., Machado, J.M. (eds) Advances in Manufacturing IV. MANUFACTURING 2024. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-56463-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56463-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56465-9

  • Online ISBN: 978-3-031-56463-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics