Skip to main content

The Influence of Shot Peening and Brushing on the Deburring Effectiveness and Surface Layer Properties of 1.0503 Steel

  • Conference paper
  • First Online:
Advances in Manufacturing IV (MANUFACTURING 2024)

Abstract

Burrs that often remain on the edges of the workpiece after machining require removal. The functional properties of manufactured parts can be improved via finishing treatments. The aim of this study was to assess the effectiveness of burr removal by brushing and shot peening and to determine the impact of these treatments on selected properties of the surface layer of 1.0503 steel elements. Brushing was conducted on a vertical machining center, FV580a, using a 120 mm diameter brush with wire fibers. The study showed brushing and shot peening to be effective burr removal methods. In the adopted processing conditions, brushing resulted in a slight improvement in the surface roughness by 11%, while shot peening caused the tested surface roughness parameters to increase several times compared to their values after initial milling processing. The results also demonstrated a significant increase in the microhardness around the edges of the samples after brushing and shot peening. After brushing the surface microhardness increased to HV0.3 = 390 and after shot peening it was HV0.3 = 306, which may have a positive impact on the durability of produced parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, W., et al.: Influence of cutting parameters and tool nose radius on the wear behavior of coated carbide tool when turning austenitic stainless steel. Mater. Today Commun. 37, 107349 (2023). https://doi.org/10.1016/j.mtcomm.2023.107349

    Article  Google Scholar 

  2. Ciecieląg, K., Zaleski, K.: Milling of three types of thin-walled elements made of polymer composite and titanium and aluminum alloys used in the aviation industry. Materials 15, 5949 (2022). https://doi.org/10.3390/ma15175949

    Article  Google Scholar 

  3. Zawada-Michałowska, M., Kuczmaszewski, J., Pieśko, P.: Effect of the geometry of thin-walled aluminium alloy elements on their deformations after milling. Materials 15, 9049 (2022). https://doi.org/10.3390/ma15249049

    Article  Google Scholar 

  4. Kuczmaszewski, J., Zaleski, K., Matuszak, J., Mądry, J.: Testing geometric precision and surface roughness of titanium alloy thin-walled elements processed with milling. In: Diering, M., Wieczorowski, M., Brown, C.A. (eds.) MANUFACTURING 2019. LNME, pp. 95–106. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18682-1_8

  5. Wojciechowski, S., Talar, R., Zawadzki, P., Wieczorowski, M.: Evaluation of physical indicators and tool wear during grooving of spheroidal cast iron with a novel WCCo/cBN (BNDCC) inserts. Wear 454–455, 203301 (2020). https://doi.org/10.1016/j.wear.2020.203301

  6. Sharif, S., Rahim, E.A.: Performance of coated- and uncoated-carbide tools when drilling titanium alloy—Ti–6Al4V. J. Mater. Process. Technol. 185, 72–76 (2007). https://doi.org/10.1016/j.jmatprotec.2006.03.142

    Article  Google Scholar 

  7. Gupta, M.K., et al.: Potential use of cryogenic cooling for improving the tribological and tool wear characteristics while machining aluminum alloys. Tribol. Int. 183, 108434 (2023). https://doi.org/10.1016/j.triboint.2023.108434

    Article  Google Scholar 

  8. Maruda, R.W., Krolczyk, G.M., Nieslony, P., Wojciechowski, S., Michalski, M., Legutko, S.: The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism. J. Manuf. Process. 24, 107–115 (2016). https://doi.org/10.1016/j.jmapro.2016.08.006

    Article  Google Scholar 

  9. Twardowski, P., Wieczorowski, M.: Monitoring of cutting process and tool condition of metal and metal composite. Materials 16, 3660 (2023). https://doi.org/10.3390/ma16103660

    Article  Google Scholar 

  10. Chern, G.-L.: Study on mechanisms of burr formation and edge breakout near the exit of orthogonal cutting. J. Mater. Process. Technol. 176, 152–157 (2006). https://doi.org/10.1016/j.precisioneng.2006.04.001

    Article  Google Scholar 

  11. Kumar, S., Dornfeld, D.: Basic approach to a prediction system for burr formation in face milling. J. Manuf. Process. 5, 127–142 (2003). https://doi.org/10.1016/S1526-6125(03)70048-6

    Article  Google Scholar 

  12. Kujawińska, A., et al.: Methodology supporting the planning of machining allowances in the wood industry. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds.) International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding, pp. 338–347. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67180-2_33

    Chapter  Google Scholar 

  13. Bahçe, E., Özdemir, B.: Investigation of the burr formation during the drilling of free-form surfaces in al 7075 alloy. J. Market. Res. 8, 4198–4208 (2019)

    Google Scholar 

  14. Harugade, M., Waigaonkar, S., Kulkarni, G., Diering, M.: Experimental investigations of magnetic field-assisted high-speed electrochemical discharge drilling. Mater. Manuf. Processes 38, 1243–1254 (2023). https://doi.org/10.1080/10426914.2021.2016814

    Article  Google Scholar 

  15. Aurich, J.C., Dornfeld, D., Arrazola, P.J., Franke, V., Leitz, L., Min, S.: Burrs—Analysis, control and removal. CIRP Ann. Manuf. Technol. 58, 519–542 (2009). https://doi.org/10.1016/j.cirp.2009.09.004

    Article  Google Scholar 

  16. Bähre, D., Brünnet, H., Swat, M.: Investigation of one-way abrasive flow machining and in-process measurement of axial forces. Procedia CIRP 1, 419–424 (2012). https://doi.org/10.1016/j.procir.2012.04.075

    Article  Google Scholar 

  17. Yin, S., Shinmura, T.: Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy. Int. J. Mach. Tools Manuf 44, 1297–1303 (2004). https://doi.org/10.1016/j.ijmachtools.2004.04.023

    Article  Google Scholar 

  18. Prathap, R.: A case study to setup optimum process parameters in thermal deburring for removing the burr in barrel of fuel injector pump using Taguchi approach. ResearchGate 02, 26–35 (2012). https://doi.org/10.9790/3021-02912635

    Article  Google Scholar 

  19. Schmidt, J., Grandi, F., Peruzzini, M., Raffaeli, R., Pellicciari, M.: Novel robotic cell architecture for zero defect intelligent deburring. Procedia Manuf. 51, 140–147 (2020). https://doi.org/10.1016/j.promfg.2020.10.021

    Article  Google Scholar 

  20. Onstein, I.F., Bjerkeng, M., Martinsen, K.: Automated tool trajectory generation for robotized deburring of cast parts based on 3D scans. Procedia CIRP 118, 507–512 (2023). https://doi.org/10.1016/j.procir.2023.06.087

    Article  Google Scholar 

  21. Matuszak, J., Zaleski, K.: Edge states after wire brushing of magnesium alloys. Aircr. Eng. Aerosp. Technol. 86, 328–335 (2014). https://doi.org/10.1108/AEAT-09-2012-0155

    Article  Google Scholar 

  22. Matuszak, J.: Effect of ceramic brush treatment on the surface quality and edge condition of aluminium alloy after abrasive waterjet machining. Adv. Sci. Technol. Res. J. 15, 254–263 (2021). https://doi.org/10.12913/22998624/140336

    Article  Google Scholar 

  23. Stango, R.J.: Filamentary brushing tools for surface finishing applications. Met. Finish. 100, 82–91 (2002). https://doi.org/10.1016/S0026-0576(02)82007-4

    Article  Google Scholar 

  24. Krzyzak, A., Racinowski, D., Szczepaniak, R., Kosicka, E.: An assessment of the reliability of CFRP composites used in nodes of friction after impact of UV-A impacts and thermal shocks. Eksploatacja i Niezawodność – Maintenance and Reliability (2023). https://doi.org/10.17531/ein/174221

  25. Kulisz, M., Zagórski, I., Matuszak, J., Kłonica, M.: Properties of the surface layer after trochoidal milling and brushing: experimental study and artificial neural network simulation. Appl. Sci. 10, 75 (2019). https://doi.org/10.3390/app10010075

    Article  Google Scholar 

  26. Fredj, N.B., Nasr, M.B., Rhouma, A.B., Habib, S., Chedly, B.: Fatigue life improvements of the AISI 304 stainless steel ground surfaces by wire brushing. J. Mater. Eng. Perform. 13, 564–574 (2004). https://doi.org/10.1361/15477020420819

    Article  Google Scholar 

  27. Matuszak, J., Zaleski, K., Ciecieląg, K., Skoczylas, A.: Analysis of the effectiveness of removing surface defects by brushing. Materials 15, 7833 (2022). https://doi.org/10.3390/ma15217833

    Article  Google Scholar 

  28. Ciecieląg, K., Zaleski, K., Kęcik, K.: Effect of milling parameters on the formation of surface defects in polymer composites. Mater. Sci. 57, 882–893 (2022). https://doi.org/10.1007/s11003-022-00622-w

    Article  Google Scholar 

  29. Ciecieląg, K., Kęcik, K., Skoczylas, A., Matuszak, J., Korzec, I., Zaleski, R.: Non-destructive detection of real defects in polymer composites by ultrasonic testing and recurrence analysis. Materials 15, 7335 (2022). https://doi.org/10.3390/ma15207335

    Article  Google Scholar 

  30. Qian, W., Huang, S., Yin, X., Xie, L.: Simulation analysis with randomly distributed multiple projectiles and experimental study of shot peening. Coatings 12, 1783 (2022). https://doi.org/10.3390/coatings12111783

    Article  Google Scholar 

  31. Zaleski, K.: The effect of shot peening on the fatigue life of parts made of titanium alloy Ti-6Al-4V. Eksploatacja i Niezawodnosc 44, 65–71 (2009)

    Google Scholar 

  32. Avcu, Y.Y., Iakovakis, E., Guney, M., et al.: Surface and tribological properties of powder metallurgical Cp-Ti titanium alloy modified by shot peening. Coatings 13, 89 (2023). https://doi.org/10.3390/coatings13010089

    Article  Google Scholar 

  33. Das, T., Erdogan, A., Kursuncu, B., Maleki, E., Unal, O.: Effect of severe vibratory peening on microstructural and tribological properties of hot rolled AISI 1020 mild steel. Surf. Coat. Technol. 403, 126383 (2020). https://doi.org/10.1016/j.surfcoat.2020.126383

    Article  Google Scholar 

  34. Walczak, M., Szala, M., Okuniewski, W.: Assessment of corrosion resistance and hardness of shot peened X5CrNi18-10 steel. Materials 15, 9000 (2022). https://doi.org/10.3390/ma15249000

    Article  Google Scholar 

  35. Maleki, E., Unal, O., Reza Kashyzadeh, K., Bagherifard, S., Guagliano, M.: A systematic study on the effects of shot peening on a mild carbon steel: microstructure, mechanical properties, and axial fatigue strength of smooth and notched specimens. Appl. Surf. Sci. Adv. 4, 100071 (2021). https://doi.org/10.1016/j.apsadv.2021.100071

    Article  Google Scholar 

  36. Matuszak, J., Zaleski, K., Skoczylas, A., Ciecieląg, K., Kęcik, K.: Influence of semi-random and regular shot peening on selected surface layer properties of aluminum alloy. Materials 14, 7920 (2021). https://doi.org/10.3390/ma14247620

    Article  Google Scholar 

  37. Nie, L., Wu, Y., Gong, H., Chen, D., Guo, X.: Effect of shot peening on redistribution of residual stress field in friction stir welding of 2219 aluminum alloy. Materials 16413, 3169 (2020). https://doi.org/10.3390/ma13143169

    Article  Google Scholar 

  38. Skoczylas, A.: Vibratory shot peening of elements cut with abrasive water jet. Adv. Sci. Technol. Res J 16, 39–49 (2022). https://doi.org/10.12913/22998624/146272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Matuszak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matuszak, J., Ciecieląg, K., Skoczylas, A., Zaleski, K. (2024). The Influence of Shot Peening and Brushing on the Deburring Effectiveness and Surface Layer Properties of 1.0503 Steel. In: Gapiński, B., Ciszak, O., Ivanov, V., Machado, J.M. (eds) Advances in Manufacturing IV. MANUFACTURING 2024. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-56463-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56463-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56465-9

  • Online ISBN: 978-3-031-56463-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics