Skip to main content

Analysis of Selected Surface Layer Properties After Ball Burnishing of Samples Cut with a Laser Parallel and Perpendicular to the Rolling Direction

  • Conference paper
  • First Online:
Advances in Manufacturing IV (MANUFACTURING 2024)

Abstract

Laser cutting is very often the first operation in the manufacture of machine components. However, due to their poor quality, the surface and edges often require finishing. In this study, ball burnishing was used as a finishing method for machine elements. The study was conducted on samples of C45 unalloyed steel that were cut with a laser beam parallel (L-PA) and perpendicular (L-PE) to the rolling direction. The burnishing process was conducted using a mechanical pressure tool with a ball diameter of dN = 8 mm. The variable parameters were the burnishing force F = 300 ÷ 930 N and the burnishing feed f = 0.05 ÷ 0.40 mm/rev. After ball burnishing the surface roughness in the entrance and the exit zone of the laser beam was reduced by 18% to 56% compared its value after laser cutting. For the samples cut perpendicular to the rolling direction, these changes were greater. However, after ball burnishing, the values of the Ra and Rt parameters for the L-PE samples were still higher than those of the L-PA samples. The use of ball burnishing led to an increase in the surface microhardness from 3% to 24%. The most favorable properties of the surface layer were obtained after burnishing conducted with f = 0.05 ÷ 0.17 mm/rev and F = 720 N. The study demonstrated that the direction of laser cutting in relation to the direction of rolling affected on the condition of the surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demiral, M., Abbassi, F., Saracyakupoglu, T., Habibi, M.: Damage analysis of a CFRP cross-ply laminate subjected to abrasive water jet cutting. Alex. Eng. J. 61(10), 7669–7684 (2022). https://doi.org/10.1016/j.aej.2022.01.018

    Article  Google Scholar 

  2. Das, P.P., Chakraborty, S.: A comparative assessment of multicriteria parametric optimization methods for plasma arc cutting processes. Decis. Anal. J. 6, 100190 (2023). https://doi.org/10.1016/j.dajour.2023.100190

    Article  Google Scholar 

  3. Shin, J.S., Song, K.-H., Oh, S.Y., Park, S.-K.: Laser cutting studies on 10–60 mm thick stainless steels with a short focus head for nuclear decommissioning. Opt. Laser Technol. 169, 110121 (2024). https://doi.org/10.1016/j.optlastec.2023.110121

    Article  Google Scholar 

  4. Nadolny, K., Romanowski, M., Sutowski, P.: Assessing the technological quality of abrasive water jet and laser cutting processes by geometrical errors and a multiplicative indicator. Measurement 217, 113060 (2023). https://doi.org/10.1016/j.measurement.2023.113060

    Article  Google Scholar 

  5. Shin, J.S., Oh, S.Y., Park, S.-K., Park, H., Lee, J.: Improved underwater laser cutting of thick steel plates through initial oblique cutting. Opt. Laser Technol. 141, 107120 (2021). https://doi.org/10.1016/j.optlastec.2021.107120

    Article  Google Scholar 

  6. Keuntje, J., et al.: Macroscopic simulation model for laser cutting of carbon fibre reinforced plastics. Procedia CIRP 111, 496–500 (2022). https://doi.org/10.1016/j.procir.2022.08.078

    Article  Google Scholar 

  7. Boujelbene, M.: Influence of the CO2 laser cutting process parameters on the Quadratic Mean Roughness Rq of the low carbon steel. Procedia Manuf. 20, 259–264 (2018). https://doi.org/10.1016/j.promfg.2018.02.038

    Article  Google Scholar 

  8. Cadena, C.M., Vázquez-Lepe, E., Martínez-López, J.I., Ciro, A., Rodríguez, C.A., García-López, E.: Influence of process parameters on surface topography of nitinol manufactured by fiber laser cutting for medical applications. Procedia CIRP 110, 82–86 (2022). https://doi.org/10.1016/j.procir.2022.06.017

    Article  Google Scholar 

  9. Amaral, I., Silva, F.J.G., Pinto, G.F.L., Campilho, R.D.S.G., Gouveia, R.M.: Improving the cut surface quality by optimizing parameters in the fibre laser cutting process. Procedia Manuf. 38, 1111–1120 (2019). https://doi.org/10.1016/j.promfg.2020.01.199

    Article  Google Scholar 

  10. Sawannia, M., Borkmann, M., Herwig, P., Wetzig, A., Weber, R., Graf, T.: Influence of laser beam oscillation on the cutting front geometry investigated by high-speed 3D-measurements. Procedia CIRP 111, 736–739 (2022). https://doi.org/10.1016/j.procir.2022.08.100

    Article  Google Scholar 

  11. Zeilmann, R.P., Conrado, R.D.: Effects of cutting power, speed and assist gas pressure parameters on the surface integrity cut by laser. Procedia CIRP 108, 367–371 (2022). https://doi.org/10.1016/j.procir.2022.03.060

    Article  Google Scholar 

  12. Sundar, M., Nath, A.K., Bandyopadhyay, D.K., Chaudhuri, S.P., Dey, P.K., Misra, D.: Effects of process parameters on the cutting quality in laser cutting of mild steel. Int. J. Adv. Manuf. Technol. 40, 865–874 (2009). https://doi.org/10.1007/s00170-008-1413-9

    Article  Google Scholar 

  13. Rajaram, N., Sheikh-Ahmad, J., Cheraghi, S.H.: CO2 laser cut quality of 4130 steel. Int. J. Mach. Tool Manuf. 43, 351–358 (2003). https://doi.org/10.1016/S0890-6955(02)00270-5

    Article  Google Scholar 

  14. Arif, A.F.M., Yilbas, B.S.: Thermal stress developed during the laser cutting process: consideration of different materials. Int. J. Adv. Manuf. Technol. 37, 697–704 (2008). https://doi.org/10.1007/s00170-007-1020-1

    Article  Google Scholar 

  15. Mӓntyjӓvi, K., Vӓisӓnen, A., Karjalaninen, J.A.: Cutting method influence on the fatigue resistance of ultra-high-strength steel. J. Mater. Form. 2, 547–550 (2009). https://doi.org/10.1007/s12289-009-0583-9

    Article  Google Scholar 

  16. Kluz, R., Antosz, K., Trzepieciński, T., Bucior, M.: Modelling the influence of slide burnishing parameters on the surface roughness of shafts made of 42CrMo4 heat-treatable steel. Materials 14, 1175 (2021). https://doi.org/10.3390/ma14051175

    Article  Google Scholar 

  17. Zhang, D., Zhang, X.-M., Ding, H.: Experimental and numerical study of the subsurface deformation and residual stress during the roller burnishing process. Procedia CIRP 87, 491–496 (2020). https://doi.org/10.1016/j.procir.2020.02.083

    Article  Google Scholar 

  18. Kowalik, M., Trzepieciński, T., Kukiełka, L., Paszta, P., Maciąg, P., Legutko, S.: Experimental and numerical analysis of the depth of the strengthened layer on shafts resulting from roller burnishing with roller braking moment. Materials 14, 5844 (2021). https://doi.org/10.3390/ma14195844

    Article  Google Scholar 

  19. Korzynski, M., Dudek, K., Korzynska, K.: Effect of slide diamond burnishing on the surface layer of valve stems and the durability of the stem-graphite seal friction pair. Appl. Sci. 13, 6392 (2023). https://doi.org/10.3390/app13116392

    Article  Google Scholar 

  20. Skoczylas, A., Zaleski, K., Matuszak, J., Ciecieląg, K., Zaleski, R., Gorgol, M.: Influence of slide burnishing parameters on the surface layer properties of stainless steel and mean positron lifetime. Materials 15, 8131 (2022). https://doi.org/10.3390/ma15228131

    Article  Google Scholar 

  21. Ciecieląg, K., Kęcik, K., Skoczylas, A., Matuszak, J., Korzec, I., Zaleski, R.: Non-destructive detection of real defects in polymer composites by ultrasonic testing and recurrence analysis. Materials 15(20), 7335 (2022). https://doi.org/10.3390/ma15207335

    Article  Google Scholar 

  22. Swirad, S.: Changes in areal surface textures due to ball burnishing. Materials 16, 5904 (2023). https://doi.org/10.3390/ma16175904

    Article  Google Scholar 

  23. Skoczylas, A., Kłonica, M.: Selected properties of the surface layer of C45 steel samples after slide burnishing. Materials 16, 6513 (2023). https://doi.org/10.3390/ma16196513

    Article  Google Scholar 

  24. Van, A.-L., Nguyen, T.-T., Dang, X.-B., Huu, P.-N.: Multi-objective optimization of MQL system parameters for the roller burnishing operation for energy saving, product quality and air pollution. Soft. Comput. (2023). https://doi.org/10.1007/s00500-023-09165-x

    Article  Google Scholar 

  25. Ferencsik, V., Varga, G.: The influence of diamond burnishing process parameters on surface roughness of low-alloyed aluminium workpieces. Machines 10, 564 (2022). https://doi.org/10.3390/machines10070564

    Article  Google Scholar 

  26. Kalisz, J., Zak, K., Wojciechowski, S., Gupta, M.K., Krolczyk, G.M.: Technological and tribological aspects of milling-burnishing process of complex surfaces. Tribol. Int. 155, 106770 (2022). https://doi.org/10.1016/j.triboint.2020.106770

    Article  Google Scholar 

  27. Skoczylas, A., Zaleski, K.: Selected properties of the surface layer of C45 steel parts subjected to laser cutting and ball burnishing. Materials 13, 3429 (2020). https://doi.org/10.3390/ma13153429

    Article  Google Scholar 

  28. Qian, W., Huang, S., Yin, X., Xie, L.: Simulation analysis with randomly distributed multiple projectiles and experimental study of shot peening. Coatings 12, 1783 (2022). https://doi.org/10.3390/coatings12111783

    Article  Google Scholar 

  29. Wang, C., Tao, X., Sun, K., Wang, S., Li, K., Deng, H.: On the sensitivity of the three dimensional random representative finite element model of multiple shot impacts to the SP induced stress field, Almen intensity, and surface roughness. Int. J. Adv. Manuf. Technol. 125, 2549–2567 (2023). https://doi.org/10.1007/s00170-023-10892-6

    Article  Google Scholar 

  30. Maleki, E., Unal, O., Kashyzadeh, K.R., Bagherifard, S., Guagliano, M.: A systematic study on the effects of shot peening on a mild carbon steel: microstructure, mechanical properties, and axial fatigue strength of smooth and notched specimens. Appl. Surf. Sci. Adv. 4, 100071 (2021). https://doi.org/10.1016/j.apsadv.2021.100071

    Article  Google Scholar 

  31. Skoczylas, A., Zaleski, K.: Effect of centrifugal shot peening on the surface properties of laser-cut C45 steel parts. Materials 12, 3635 (2019). https://doi.org/10.3390/ma12213635

    Article  Google Scholar 

  32. Zaleski, K., Skoczylas, A., Ciecielag, K.: The investigations of the surface layer properties of C45 steel after plasma cutting and centrifugal shot peening. In: Królczyk, G.M., Niesłony, P., Królczyk, J. (eds.) IMM 2019. LNME, pp. 172–185. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49910-5_16

    Chapter  Google Scholar 

  33. Matuszak, J.: Effect of ceramic brush treatment on the surface quality and edge condition of aluminium alloy after abrasive waterjet machining. Adv. Sci. Technol. Res. J. 15(3), 254–263 (2021). https://doi.org/10.12913/22998624/140336

    Article  Google Scholar 

  34. Ye, T., Qiu, S., Xia, E., Luo, F., Liu, W., Wu, Y.: Mechanical property and microstructure of rolled 7075 alloy under hot compression with different original grains. Metals 13, 1456 (2023). https://doi.org/10.3390/met13081456

    Article  Google Scholar 

  35. Zawada-Michałowska, M., Kuczmaszewski, J., Pieśko, P., Łogin, W.: Influence of machining strategies and technological history of semi-finished product on the deformation of thin-wall elements after milling. Adv. Sci. Technol. Res. J. 11(3), 289–296 (2017). https://doi.org/10.12913/22998624/76482

    Article  Google Scholar 

  36. Sedlacek, M., Podgornik, B., Vizitin, J.: Influence of surface preparation on roughness parameters, friction and wear. Wear 266, 482–487 (2009). https://doi.org/10.1016/j.wear.2008.04.017

    Article  Google Scholar 

  37. Ibrahim, A.A., Khalil, T., Tawfeek, T.: Study the influence of a new ball burnishing technique on the surface roughness of AISI 1018 low carbon steel. Int. J. Eng. Technol. 4(1), 227–232 (2015). https://doi.org/10.14419/ijet.v4i1.4181

    Article  Google Scholar 

  38. Sachin, B., Rao, C., Naik, G.N., Puneet, N.P.: Influence of slide burnishing process on the surface characteristics of precipitation hardenable steel. SN Appl. Sci. 3, 223 (2021). https://doi.org/10.1007/s42452-021-04260-w

    Article  Google Scholar 

  39. Grzesik, W., Żak, K., Chudy, R., Prażmowski, M., Małecka, J.: Optimization of subtractive-trans formative hybrid processes supported by the technological heredity concept. CIRP Ann. Manuf. Technol. 68, 101–104 (2019). https://doi.org/10.1016/j.cirp.2019.03.005

  40. Skoczylas, A.: Vibratory shot peening of elements cut with abrasive water jet. Adv. Sci. Technol. Res. J. 16(2), 39–49 (2022). https://doi.org/10.12913/22998624/146272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Skoczylas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skoczylas, A., Matuszak, J., Ciecieląg, K., Zaleski, K. (2024). Analysis of Selected Surface Layer Properties After Ball Burnishing of Samples Cut with a Laser Parallel and Perpendicular to the Rolling Direction. In: Gapiński, B., Ciszak, O., Ivanov, V., Machado, J.M. (eds) Advances in Manufacturing IV. MANUFACTURING 2024. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-56463-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56463-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56465-9

  • Online ISBN: 978-3-031-56463-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics