Skip to main content

Recurrence Analysis and Feed Force in Drilling of Polymer Composites

  • Conference paper
  • First Online:
Advances in Manufacturing IV (MANUFACTURING 2024)

Abstract

This study relates to drilling of polymer composites. Composite drilling results from the impossibility of making precise holes in the first stage of composite production, i.e. in the molds. Making holes is associated with the problem of delamination, i.e. the fracture of the fiber reinforcement at the tool exit. A drill with a TiAlN coating applied by the PVD technique was used in the study. The paper presents the results of feed force measurement made in the drilling of polymer composites with glass, carbon and aramid fibers. The results showed that the highest feed force values occurred in the drilling of aramid fiber-reinforced plastics (820 N), while the lowest ones when drilling glass fiber-reinforced plastics (130 N). It was found that feed per revolution had the most significant impact on the feed force values. Each type of fiber of composite cause the feed force to increase, but the increase is most observed for drilling aramid fiber reinforced plastics. For composites reinforced with glass fibers, the feed force values are in the range of 130–400 N, with carbon fibers 420–650 N, with aramid fibers 480–820 N. The measured feed force values were also used to determine recurrence quantifications sensitive to changes in the technological parameters of drilling. An analysis of the drilling process by the recurrence method showed that determinism, longest diagonal line, entropy and laminarity were the most sensitive to variations in the drilling parameters. These indicators would change their values (decrease or increase) with changes in the values of feed per revolution and cutting speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tarfaoui, M., Choukri, S., Neme, A.: Effect of fibre orientation on mechanical properties of the laminated polymer composites subjected to out-of-plane high strain rate compressive loadings. Compos. Sci. Technol. 68, 477–485 (2008). https://doi.org/10.1016/j.compscitech.2007.06.014

    Article  Google Scholar 

  2. Langella, A., Nele, L., Maio, A.: A torque and thrust prediction model for drilling of composite materials. Compos. A Appl. Sci. Manuf. 36, 83–93 (2005). https://doi.org/10.1016/S1359-835X(04)00177-0

    Article  Google Scholar 

  3. Singh, I., Bhatnagar, N., Viswanath, P.: Drilling of uni-directional glass fiber reinforced plastics: experimental and finite element study. Mater. Des. 29, 546–553 (2008). https://doi.org/10.1016/j.matdes.2007.01.029

    Article  Google Scholar 

  4. Fernandes, M., Cook, C.: Drilling of carbon composites using a one shot drill bit. Part I: five stage representation of drilling and factors affecting maximum force and torque. Int. J. Mach. Tools Manuf. 46, 70–75 (2006). https://doi.org/10.1016/j.ijmachtools.2005.03.015

  5. Fernandes, M., Cook, C.: Drilling of carbon composites using a one shot drill bit. Part II: empirical modeling of maximum thrust force. Int. J. Mach. Tools Manuf. 46, 76–79 (2006). https://doi.org/10.1016/j.ijmachtools.2005.03.016

  6. Teti, R.: Machining of composite materials. CIRP Ann. 51, 611–634 (2002). https://doi.org/10.1016/S0007-8506(07)61703-X

    Article  Google Scholar 

  7. Brinksmeier, E., Fangmann, S., Rentsch, R.: Drilling of composites and resulting surface integrity. CIRP Ann. 60, 57–60 (2011). https://doi.org/10.1016/j.cirp.2011.03.077

    Article  Google Scholar 

  8. Lee, S.-C., Jeong, S.-T., Park, J.-N., Kim, S.-J., Cho, G.-J.: Study on drilling characteristics and mechanical properties of CFRP composites. Acta Mech. Solida Sin. 21, 364–368 (2008). https://doi.org/10.1007/s10338-008-0844-z

    Article  Google Scholar 

  9. Eneyew, E.D., Ramulu, M.: Experimental study of surface quality and damage when drilling unidirectional CFRP composites. J. Market. Res. 3, 354–362 (2014). https://doi.org/10.1016/j.jmrt.2014.10.003

    Article  Google Scholar 

  10. Ciecieląg, K.: Study on the machinability of glass, carbon and aramid fiber reinforced plastics in drilling and secondary drilling operations. Adv. Sci. Technol. Res. J. 16, 57–66 (2022). https://doi.org/10.12913/22998624/146079

    Article  Google Scholar 

  11. Murphy, C., Byrne, G., Gilchrist, M.D.: The performance of coated tungsten carbide drills when machining carbon fibre-reinforced epoxy composite materials. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 216, 143–152 (2002). https://doi.org/10.1243/0954405021519735

    Article  Google Scholar 

  12. Chen, W.-C.: Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates. Int. J. Mach. Tools Manuf. 37, 1097–1108 (1997). https://doi.org/10.1016/S0890-6955(96)00095-8

    Article  Google Scholar 

  13. John, K.M., Thirumalai Kumaran, S.: Backup support technique towards damage-free drilling of composite materials: a review. Int. J. Lightweight Mater. Manuf. 3, 357–364 (2020). https://doi.org/10.1016/j.ijlmm.2020.06.001

    Article  Google Scholar 

  14. Kuczmaszewski, J., Zaleski, K., Matuszak, J., Mądry, J.: Testing geometric precision and surface roughness of titanium alloy thin-walled elements processed with milling. In: Diering, M., Wieczorowski, M., Brown, C.A. (eds.) MANUFACTURING 2019. LNME, pp. 95–106. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18682-1_8

    Chapter  Google Scholar 

  15. Matuszak, J.: Effect of ceramic brush treatment on the surface quality and edge condition of aluminium alloy after abrasive waterjet machining. Adv. Sci. Technol. Res. J. 15, 254–263 (2021). https://doi.org/10.12913/22998624/140336

    Article  Google Scholar 

  16. Zaleski, K., Skoczylas, A., Ciecielag, K.: The investigations of the surface layer properties of C45 steel after plasma cutting and centrifugal shot peening. In: Królczyk, G.M., Niesłony, P., Królczyk, J. (eds.) IMM 2019. LNME, pp. 172–185. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49910-5_16

    Chapter  Google Scholar 

  17. Skoczylas, A.: Vibratory shot peening of elements cut with abrasive water jet. Adv. Sci. Technol. Res. J. 16, 39–49 (2022). https://doi.org/10.12913/22998624/146272

    Article  Google Scholar 

  18. Zawada-Michałowska, M., Kuczmaszewski, J., Pieśko, P.: Effect of the geometry of thin-walled aluminium alloy elements on their deformations after milling. Materials 15, 9049 (2022). https://doi.org/10.3390/ma15249049

    Article  Google Scholar 

  19. Zawada-Michałowska, M., Pieśko, P.: Post-machining deformations of thin-walled elements made of EN AW-2024 T351 aluminum alloy as regards the mechanical properties of the applied, Rolled Semi-Finished Products. Materials 14, 7591 (2021). https://doi.org/10.3390/ma14247591

    Article  Google Scholar 

  20. Brinksmeier, E., Janssen, R.: Drilling of multi-layer composite materials consisting of carbon fiber reinforced plastics (CFRP), Titanium and Aluminum Alloys. CIRP Ann. 51, 87–90 (2002). https://doi.org/10.1016/S0007-8506(07)61472-3

    Article  Google Scholar 

  21. Kuczmaszewski, J., Pieśko, P., Zawada-Michałowska, M.: Evaluation of the impact of the natural seasoning process on post-machining deformation of thin-walled elements made of aluminium alloy EN AW-2024. IOP Conf. Ser. Mater. Sci. Eng. 393, 012102 (2018). https://doi.org/10.1088/1757-899X/393/1/012102

  22. Bhattacharyya, D., Horrigan, D.P.W.: A study of hole drilling in Kevlar composites. Compos. Sci. Technol. 58, 267–283 (1998). https://doi.org/10.1016/S0266-3538(97)00127-9

    Article  Google Scholar 

  23. Park, K.M., Kurniawan, R., Yu, Z., Ko, T.J.: Evaluation of a hybrid cryogenic deburring method to remove uncut fibers on carbon fiber-reinforced plastic composites. Int. J. Adv. Manuf. Technol. 101, 1509–1523 (2019). https://doi.org/10.1007/s00170-018-3045-z

    Article  Google Scholar 

  24. Mondal, N., Sardar, B.S., Halder, R.N., Das, S.: Observation of drilling burr and finding out the condition for minimum burr formation. Int. J. Manuf. Eng. 2014, 1–12 (2014). https://doi.org/10.1155/2014/208293

    Article  Google Scholar 

  25. Zitoune, R., El Mansori, M., Krishnaraj, V.: Tribo-functional design of double cone drill implications in tool wear during drilling of copper mesh/CFRP/woven ply. Wear 302, 1560–1567 (2013). https://doi.org/10.1016/j.wear.2013.01.046

    Article  Google Scholar 

  26. Khashaba, U.A., El-Sonbaty, I.A., Selmy, A.I., Megahed, A.A.: Machinability analysis in drilling woven GFR/epoxy composites: part I - effect of machining parameters. Compos. A Appl. Sci. Manuf. 41, 391–400 (2010). https://doi.org/10.1016/j.compositesa.2009.11.006

    Article  Google Scholar 

  27. Khashaba, U.A., El-Sonbaty, I.A., Selmy, A.I., Megahed, A.A.: Machinability analysis in drilling woven GFR/epoxy composites: Part II – effect of drill wear. Compos. A Appl. Sci. Manuf. 41, 1130–1137 (2010). https://doi.org/10.1016/j.compositesa.2010.04.011

    Article  Google Scholar 

  28. Hocheng, H., Tsao, C.C.: The path towards delamination-free drilling of composite materials. J. Mater. Process. Technol. 167, 251–264 (2005). https://doi.org/10.1016/j.jmatprotec.2005.06.039

    Article  Google Scholar 

  29. Hocheng, H., Tsao, C.C.: Comprehensive analysis of delamination in drilling of composite materials with various drill bits. J. Mater. Process. Technol. 140, 335–339 (2003). https://doi.org/10.1016/S0924-0136(03)00749-0

    Article  Google Scholar 

  30. Hocheng, H., Tsao, C.C.: Effects of special drill bits on drilling-induced delamination of composite materials. Int. J. Mach. Tools Manuf 46, 1403–1416 (2006). https://doi.org/10.1016/j.ijmachtools.2005.10.004

    Article  Google Scholar 

  31. Ho-Cheng, H., Dharan, C.K.H.: Delamination during drilling in composite laminates. J. Eng. Ind. 112, 236–239 (1990). https://doi.org/10.1115/1.2899580

    Article  Google Scholar 

  32. Upadhyay, P.C., Lyons, J.S.: On the evaluation of critical thrust for delamination-free drilling of composite laminates. J. Reinf. Plast. Compos. 18, 1287–1303 (1999). https://doi.org/10.1177/073168449901801402

    Article  Google Scholar 

  33. Ciecieląg, K.: Effect of composite material fixing on hole accuracy and defects during drilling. Adv. Sci. Technol. Res. J. 15, 54–65 (2021). https://doi.org/10.12913/22998624/138604

    Article  Google Scholar 

  34. Ciecieląg, K.: Machinability measurements in milling and recurrence analysis of thin-walled elements made of polymer composites. Materials 16, 4825 (2023). https://doi.org/10.3390/ma16134825

    Article  Google Scholar 

  35. Ciecieląg, K., Skoczylas, A., Matuszak, J., Zaleski, K., Kęcik, K.: Defect detection and localization in polymer composites based on drilling force signal by recurrence analysis. Measurement 186, 110126 (2021). https://doi.org/10.1016/j.measurement.2021.110126

    Article  Google Scholar 

  36. Iwaniec, J., Iwaniec, M.: Application of recurrence-based methods to heart work analysis. In: Timofiejczuk, A., Łazarz, B.E., Chaari, F., Burdzik, R. (eds.) ICDT 2016. ACM, vol. 10, pp. 343–352. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62042-8_31

    Chapter  Google Scholar 

  37. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Rev. E 66, 026702 (2002). https://doi.org/10.1103/PhysRevE.66.026702

    Article  Google Scholar 

  38. Oluwole, O.S.A.: Dynamic regimes of El Niño southern oscillation and influenza pandemic timing. Front. Public Health 5, 301 (2017). https://doi.org/10.3389/fpubh.2017.00301

    Article  Google Scholar 

  39. Marwan, N., Carmenromano, M., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007). https://doi.org/10.1016/j.physrep.2006.11.001

  40. Marwan, N., Kurths, J., Foerster, S.: Analysing spatially extended high-dimensional dynamics by recurrence plots. Phys. Lett. A 379, 894–900 (2015). https://doi.org/10.1016/j.physleta.2015.01.013

    Article  Google Scholar 

  41. Marwan, N., Donges, J.F., Zou, Y., Donner, R.V., Kurths, J.: Complex network approach for recurrence analysis of time series. Phys. Lett. A 373, 4246–4254 (2009). https://doi.org/10.1016/j.physleta.2009.09.042

    Article  Google Scholar 

  42. Gao, J., Cai, H.: On the structures and quantification of recurrence plots. Phys. Lett. A 270, 75–87 (2000). https://doi.org/10.1016/S0375-9601(00)00304-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Ciecieląg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ciecieląg, K., Skoczylas, A., Matuszak, J. (2024). Recurrence Analysis and Feed Force in Drilling of Polymer Composites. In: Gapiński, B., Ciszak, O., Ivanov, V., Machado, J.M. (eds) Advances in Manufacturing IV. MANUFACTURING 2024. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-56463-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56463-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56465-9

  • Online ISBN: 978-3-031-56463-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics