Skip to main content

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 31 Accesses

Abstract

Statistical methods should always be applied in the presence of enough amount of data. In this book, the data used have been taken gathering a conspicuous amount of information from the literature, and resumed in the work of Moretta et al. (J Clean Prod 375:134140, 2022). Then, these have been collected in a single database, which structure and content are described in the next sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moretta F, Goracci A, Manenti F, Bozzano G (2022) Data-driven model for feedstock blending optimization of anaerobic co-digestion by BMP maximization. J Clean Prod 375:134140. https://doi.org/10.1016/j.jclepro.2022.134140

    Article  Google Scholar 

  2. Jr SV (2014) Analytical techniques for the chemical analysis of plant biomass and biomass products. Anal Methods 6(20):8094–8105. https://doi.org/10.1039/C4AY00388H

  3. Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018. https://doi.org/10.1016/j.biortech.2015.11.022

    Article  Google Scholar 

  4. Achinas S, Euverink GJW (2016) Theoretical analysis of biogas potential prediction from agricultural waste. Resour Effic Technol 2(3):143–147. https://doi.org/10.1016/j.reffit.2016.08.001

    Article  Google Scholar 

  5. Cluster Centroid: an overview|ScienceDirect Topics. Consultato: 19 luglio 2023. Disponibile su: https://www.sciencedirect.com/topics/computer-science/cluster-centroid

  6. Page DI, Hickey KL, Narula R, Main AL, Grimberg SJ (2008) Modeling anaerobic digestion of dairy manure using the IWA anaerobic digestion model no. 1 (ADM1). Water Sci Technol 58(3):689–695. https://doi.org/10.2166/wst.2008.678

    Article  Google Scholar 

  7. Murto M, Björnsson L, Mattiasson B (2004) Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J Environ Manage 70(2):101–107. https://doi.org/10.1016/j.jenvman.2003.11.001

    Article  Google Scholar 

  8. Steffen R, Szolar O, Braun R (1998) Feedstocks for anaerobic digestion. Inst Agrobiotechnol Tulin Univ Agric Sci Vienna, pp 1–29

    Google Scholar 

  9. Bywater A, Kusch-Brandt S (2022) Exploring farm anaerobic digester economic viability in a time of policy change in the UK. Processes 10(2):2. https://doi.org/10.3390/pr10020212

    Article  Google Scholar 

  10. US EPA O (2023) Anaerobic digestion on poultry farms. Consultato: 19 luglio 2023. Disponibile su: https://www.epa.gov/agstar/anaerobic-digestion-poultry-farms

  11. Li Y, Achinas S, Zhao J, Geurkink B, Krooneman J, Euverink GJW (2020) Co-digestion of cow and sheep manure: performance evaluation and relative microbial activity. Renew Energy 153:553–563. https://doi.org/10.1016/j.renene.2020.02.041

    Article  Google Scholar 

  12. Kainthola J, Kalamdhad AS, Goud VV (2020) Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste. Renew Energy 149:1352–1359. https://doi.org/10.1016/j.renene.2019.10.124

    Article  Google Scholar 

  13. Li D et al (2015) Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresour Technol 189:319–326. https://doi.org/10.1016/j.biortech.2015.04.033

    Article  Google Scholar 

  14. Wang X, Yang G, Feng Y, Ren G, Han X (2012) Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol 120:78–83. https://doi.org/10.1016/j.biortech.2012.06.058

    Article  Google Scholar 

  15. Jabeen M, Zeshan S, Yousaf S, Haider MR, Malik RN (2015) High-solids anaerobic co-digestion of food waste and rice husk at different organic loading rates. Int Biodeterior Biodegrad 102:149–153. https://doi.org/10.1016/j.ibiod.2015.03.023

    Article  Google Scholar 

  16. Anaerobic digestion of sugar beet pulp after acid thermal and alkali thermal pretreatments|SpringerLink. Consultato: 19 luglio 2023. Disponibile su: https://doi.org/10.1007/s13399-019-00539-6

  17. Koch K, Lübken M, Gehring T, Wichern M, Horn H (2010) Biogas from grass silage: measurements and modeling with ADM1. Bioresour Technol 101(21):8158–8165. https://doi.org/10.1016/j.biortech.2010.06.009

    Article  Google Scholar 

  18. Croce S, Wei Q, D’Imporzano G, Dong R, Adani F (2016) Anaerobic digestion of straw and corn stover: the effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol Adv 34(8):1289–1304. https://doi.org/10.1016/j.biotechadv.2016.09.004

    Article  Google Scholar 

  19. Gupta P, Singh RS, Sachan A, Vidyarthi AS, Gupta A (2012) Study on biogas production by anaerobic digestion of garden-waste. Fuel 95:495–498. https://doi.org/10.1016/j.fuel.2011.11.006

    Article  Google Scholar 

  20. Li L et al (2015) Anaerobic digestion performance of vinegar residue in continuously stirred tank reactor. Bioresour Technol 186:338–342. https://doi.org/10.1016/j.biortech.2015.03.086

    Article  Google Scholar 

  21. Xu F, Li Y, Ge X, Yang L, Li Y (2018) Anaerobic digestion of food waste: challenges and opportunities. Bioresour Technol 247:1047–1058. https://doi.org/10.1016/j.biortech.2017.09.020

    Article  Google Scholar 

  22. Ahmadi-Pirlou M, Ebrahimi-Nik M, Khojastehpour M, Ebrahimi SH (2017) Mesophilic co-digestion of municipal solid waste and sewage sludge: effect of mixing ratio, total solids, and alkaline pretreatment. Int Biodeterior Biodegrad 125:97–104. https://doi.org/10.1016/j.ibiod.2017.09.004

    Article  Google Scholar 

  23. Jain S, Jain S, Wolf IT, Lee J, Tong YW (2015) A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sustain Energy Rev 52:142–154. https://doi.org/10.1016/j.rser.2015.07.091

    Article  Google Scholar 

  24. Bücker F et al (2020) Fish waste: an efficient alternative to biogas and methane production in an anaerobic mono-digestion system. Renew Energy 147:798–805. https://doi.org/10.1016/j.renene.2019.08.140

    Article  Google Scholar 

  25. Selormey GK, Barnes B, Kemausuor F, Darkwah L (2021) A review of anaerobic digestion of slaughterhouse waste: effect of selected operational and environmental parameters on anaerobic biodegradability. Rev Environ Sci Biotechnol 20(4):1073–1086. https://doi.org/10.1007/s11157-021-09596-8

    Article  Google Scholar 

  26. Energies|Free Full-Text|Anaerobic digestion of blood from slaughtered livestock: a review. Consultato: 19 luglio 2023. Disponibile su: https://www.mdpi.com/1996-1073/14/18/5666

  27. Naveen CC et al (2022) Effects of different parameters and co-digestion options on anaerobic digestion of parboiled rice mill wastewater: a review. BioEnergy Res. https://doi.org/10.1007/s12155-022-10522-1

  28. Kazemi-Bonchenari M, Alizadeh A, Javadi L, Zohrevand M, Odongo NE, Salem AZM (2017) Use of poultry pre-cooked slaughterhouse waste as ruminant feed to prevent environmental pollution. J Clean Prod 145:151–156. https://doi.org/10.1016/j.jclepro.2017.01.066

    Article  Google Scholar 

  29. Carnevale E, Molari G, Vittuari M (2017) Used cooking oils in the biogas chain: a technical and economic assessment. Energies 10:192. https://doi.org/10.3390/en10020192

    Article  Google Scholar 

  30. Yan W, Vadivelu V, Maspolim Y, Zhou Y (2021) In-situ alkaline enhanced two-stage anaerobic digestion system for waste cooking oil and sewage sludge co-digestion. Waste Manag 120:221–229. https://doi.org/10.1016/j.wasman.2020.11.047

    Article  Google Scholar 

  31. Tamborrino A, Catalano F, Leone A, Bianchi B (2021) A real case study of a full-scale anaerobic digestion plant powered by olive by-products. Foods 10(8):8. https://doi.org/10.3390/foods10081946

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Moretta .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moretta, F., Bozzano, G. (2024). Database Introduction. In: Mathematical and Statistical Approaches for Anaerobic Digestion Feedstock Optimization. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-031-56460-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56460-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56459-8

  • Online ISBN: 978-3-031-56460-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics