Skip to main content

Assessment of Thermal Comfort Using PMV, aPMV, ePMV and TSV Indices in a Naturally Ventilated Building

  • Conference paper
  • First Online:
Safe, Secure, Ethical, Responsible Technologies and Emerging Applications (SAFER-TEA 2023)

Abstract

Thermal comfort significantly impacts human health and activity in offices, hospitals, and residential and commercial buildings. A study of thermal comfort was carried out in a naturally ventilated building in the city of Yaoundé. Thermal comfort indices such as the predicted mean vote (PMV), the adaptive predicted mean vote (aPMV), the extended predicted mean vote (ePMV) and the thermal sensation vote (TSV) were used for this study by considering two scenarios; the first in an ideal environment and the second in a real environment. Using the Humphrey model, we obtained a comfort temperature of 26.66 °C, corresponding to the operating temperature to the nearest 0.1. Whether in an ideal or real environment, the PMV index is unsuitable for studying thermal comfort in a naturally ventilated building. In an ideal environment, the aPMV index is the most appropriate for assessing thermal comfort, but in a real environment, the most appropriate index is the ePMV index.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Touzani, A.: Énergétique du bâtiment, BUREAU VERITAS (2017)

    Google Scholar 

  2. Vincelas, F.F.C., Ghislain, T., Robert, T.: Effects of the type of building materials on the thermal behavior of building in the hot dry climates: a case study of Maroua city, Cameroon. Int. J. Innov. Sci. Eng. Technol. 4(13) (2017)

    Google Scholar 

  3. Dong, Q., Xing, K., Zhang, H.: Réseau de neurones artificiels pour l’évaluation de la consommation énergétique et du coût des immeubles de bureaux en bois stratifié par croix dans des régions froides graves. Sustainability (2017)

    Google Scholar 

  4. Kemajou, A., Tseuyep, A., Egbewatt, N.E.: Le confort thermique en climat tropical humide vers un réaménagement des normes ergonomiques. Revue des Energies Renouvelables 15(13), 427–438 (2012)

    Google Scholar 

  5. Nematchoua, M.K., Tchinda, R., Ricciardi, P., Djongyang, N.: A field study on thermal comfort in naturally-ventilated buildings located in the equatorial climatic region of Cameroon. Renew. Sustain. Energy Rev. 136, 381–393 (2014)

    Google Scholar 

  6. Nicol, J.F., Humphreys, M.A.: Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build., 4 (2002)

    Google Scholar 

  7. Kameni Nematchoua, M., Roshan, G., Tchinda, R.: Impact of climate change on outdoor thermal comfort and health in tropical wet and hot zone (Douala), Cameroon. Iranian J. Health Sci. 2(12), 25–36 (2014)

    Google Scholar 

  8. Sikram, T., Ichinose, M., Sasaki, R.: Assessment of thermal comfort and building-related symptoms in air-conditioned offices in tropical regions: a case study in Singapore and Thailand. Front. Built Environ. (2020)

    Google Scholar 

  9. Nitcheu, M., Njomo, D., Meukam, P.: Experimental study of thermal comfort in traditional buildings in the region of Adamawa in Cameroon. J. Basic Appl. Sci. Res. 7(111), 1–13 (2017)

    Google Scholar 

  10. Kuchen, E.: Variable thermal comfort index for indoor work space in office buildings: a study in Germany. Open J. Civil Eng., 670–684 (2016)

    Google Scholar 

  11. Kameni, N.M., Tchinda, R., Djongyang, N.: Field study of thermal comfort in naturally ventilated classrooms of Cameroon. Universal J. Environ. Res. Technol. 3(15), 555–570 (2013)

    Google Scholar 

  12. Fanger, P.O.: Thermal Comfort. Danish Technical Press (1970)

    Google Scholar 

  13. Lee, D., Brenner, T.: Perceived temperature in the course of climate change: an analysis of global heat index from 1979 to 2013. In: The Influence of Perceived Temperature on Human Well-Being in the Context of Climate Change, p. 53 (2016)

    Google Scholar 

  14. Grosdemouge, V.: Proposition d’indicateurs de confort thermique et estimation de la température radiante moyenne en milieu urbain tropical. Contribution à la méthode nationale d’évaluation des ÉcoQuartiers (2021)

    Google Scholar 

  15. Belkhouane, H.: Etude de l’impact des modèles de confort sur la consommation énergétique pour les bâtiments NZEB’s type bureaux (Cooling dominated) (2017)

    Google Scholar 

  16. Picard, C.F., et al.: Définition des indicateurs de confort (2020)

    Google Scholar 

  17. Fiorentini, M., Serale, G., Kokogiannakis, G., Capozzoli, A., Cooper, P.: Development and evaluation of a comfort-oriented control strategy for thermal management of mixed-mode ventilated buildings. Energy Build. (2019)

    Google Scholar 

  18. Simons, B., Koranteng, C., Adinyira, E., Ayarkwa, J.: An assessment of thermal comfort in multi storey office buildings in Ghana. J. Build. Constr. Plann. Res., 30–38 (2014)

    Google Scholar 

  19. Denker, A., El Hassar, S.M.K.: Guide pour une construction Eco-énergétique en Algérie, Alger: Deutche Gesellschaft für: Internationale Zusammenarbeit (GIZ) GmbH (2014)

    Google Scholar 

  20. Penu, G.: La thermique du batiment. Dunod, Paris (2016)

    Google Scholar 

  21. Zhao, Q., Lian, Z., Lai, D.: Thermal comfort models and their developments: a review. Energy Built Environ. 2(11), 21–33 (2021)

    Google Scholar 

  22. Albatayneh, A., Alterman, D., Page, A., Moghtaderi, B.: The impact of the thermal comfort models on the prediction of building energy consumption. MDPI Sustain. 10(13609), 5 (2018)

    Google Scholar 

  23. Fabbri, K.: Indoor Thermal Comfort Perception: A Questionnaire Approach Focusing on Children, Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18651-1

  24. Guo, H., Aviv, D., Loyola, M., Teitelbaum, E., Houchois, N., Meggers, F.: On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review. Renew. Sustain. Energy Rev. (2019)

    Google Scholar 

  25. Wu, Y.: Individual thermal comfort prediction using classification tree model based on physiological parameters and thermal history in winter. Build. Simul. (2020)

    Google Scholar 

  26. Deval, J.: Le confort thermique en climat tempéré. Revue Sci. Appl., 513–531 (1984)

    Google Scholar 

  27. ISO 7730:2005: Ergonomie des ambiances thermiques- Détermination analytique et interprétation du confort thermique par le calcul des indices PMV et PPD et par des critères de confort thermique local (2005)

    Google Scholar 

  28. Yang, L., Yan, H., Lam, J.C.: Thermal comfort and building energy consumption implications – a review. Appl. Energy, 164–173 (2014)

    Google Scholar 

  29. Thapa, S., Bansal, A.K., Panda, G.K.: Adaptive thermal comfort in the residential buildings of north east India—an effect of difference in elevation. Energy Built, 1 (2017)

    Google Scholar 

  30. Ramspeck, C.B.: Thermal environmental conditions for human occupancy. Atlanta (2004)

    Google Scholar 

  31. Roetzel, A., Tsangrassoulis, A., Dietrich, U., Busching, S.: On the influence of building design, occupants and heat waves on comfort and greenhouse gas emissions in naturally ventilated offices. A study based on the EN 15251 adaptive thermal comfort model in Athens, Greece. Build. Simul. 3, 87–103 (2010)

    Google Scholar 

  32. Humphreys, M.A., Nicol, J.F.: Outdoor temperature and indoor thermal comfort: raising the precision of the relationship for the 1998 ASHRAE database of field studies 106(1485), 5 (2000)

    Google Scholar 

  33. Fanger, P.O., Toftum, J.: Extension of the PMV model to non air-conditioned buildings in warm climates. Energy Build., 533–536 (2002)

    Google Scholar 

  34. Yao, R., Li, B., Liu, J.: A theoretical adaptive model of thermal comfort – adaptive predicted mean vote (aPMV). Build. Environ., 2089–2096 (2009)

    Google Scholar 

  35. Ekici, C.: A review of thermal comfort and method of using Fanger’s PMV equation. In: 5th International Symposium on Measurement, Analysis and Modeling of Human Functions, Vancouver (2013)

    Google Scholar 

  36. Lee, D.: The influence of perceived temperature on human well-being in the context of climate change. Université de Marburg, Marburg (2016)

    Google Scholar 

Download references

Funding

“This research received no external funding”.

Author information

Authors and Affiliations

Authors

Contributions

Tsague Nguimatio Cathy Beljorelle—Conceptualization, methodology, software, validation, formal analysis, investigation, resources, data curation, writing—original draft preparation, writing—review and editing, visualization, project administration, funding acquisition.

Tchinda Rene—Conceptualization, validation, visualization, supervision,

Seutche Jean Calvin—Conceptualization, methodology, validation, investigation, formal analysis, investigation, writing—review and editing

Medjo Nouadje Brigitte—Validation, formal analysis, visualization, supervision

All authors have read and agreed to the published version of the manuscript.”

Corresponding author

Correspondence to Tsague Cathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cathy, T., Astrid, M., Seutche, J., Rene, T. (2024). Assessment of Thermal Comfort Using PMV, aPMV, ePMV and TSV Indices in a Naturally Ventilated Building. In: Tchakounte, F., Atemkeng, M., Rajagopalan, R.P. (eds) Safe, Secure, Ethical, Responsible Technologies and Emerging Applications. SAFER-TEA 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 566. Springer, Cham. https://doi.org/10.1007/978-3-031-56396-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56396-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56395-9

  • Online ISBN: 978-3-031-56396-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics