Skip to main content

Modeling the Removal by Rain of Two Interacting Gases Forming Distinct Particulate Matters in the Atmosphere

  • Conference paper
  • First Online:
Advances in Mathematical Modelling, Applied Analysis and Computation (ICMMAAC 2023)

Abstract

This paper deals with the removal of two interacting gases (gaseous pollutants) forming two distinct particulate matters, namely smaller and larger particulate matters, by rain from the atmosphere. There are several sources that release these gases and particulate particles into the environment. The conversion of gas to particle in the atmosphere results in the formation of smaller particulate matters and these particulate matters combine to form larger particulate matters. Furthermore, the interaction of two gases leads to the formation of larger particulate matters in the atmosphere. The presumption is that there are six interacting phases in the atmosphere under consideration, comprising of the raindrops phase, two distinct phases of gaseous pollutants, smaller and larger particulate matters phases, and a combined phase of gases absorbed in the raindrops. A system of ordinary differential equations is used to develop the mathematical model. In order to investigate the proposed mathematical model, stability theory of differential equation is applied. The results of the theoretical investigation reveal that the gaseous pollutants and the particulate matters are considerably removed by rain from the atmosphere. To verify the findings of analytical investigation, numerical simulation of the model is also executed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andronache, C., et al.: Gas-to-particle conversion of tropospheric sulfur as estimated from observations in the western North Pacific during PEM-West B. J. Geophys. Res.: Atmos. 102(D23), 28511–28538 (1997)

    Article  Google Scholar 

  2. Binte Jashim, Z., Akhtar Hossain, S., Enayet Hossain, M., Islam, M.M., E-Gulshan, J., Nurul Huda, M.: Effects of air borne particulate matter on the plants grown in different areas of dhaka mega city, bangladesh: an air pollution tolerance study. Environ. Claims J. 33(4), 351–370 (2021). https://doi.org/10.1080/10406026.2020.1858606

  3. Bourdrel, T., Bind, M.A., Béjot, Y., Morel, O., Argacha, J.F.: Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 110(11), 634–642 (2017). https://doi.org/10.1016/j.acvd.2017.05.003

    Article  Google Scholar 

  4. Clement, C.F., Ford, I.J.: Gas-to-particle conversion in the atmosphere: I. Evidence from empirical atmospheric aerosols. Atmos. Environ. 33(3), 475–487(1999). https://doi.org/10.1016/S1352-2310(98)00264-7

  5. Clement, C.F., Ford, I.J.: Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts. Atmos. Environ. 33(3), 489–499 (1999). https://doi.org/10.1016/S1352-2310(98)00265-9

  6. Dubey, V.P., Dubey, S., Kumar, D., Singh, J.: A computational study of fractional model of atmospheric dynamics of carbon dioxide gas. Chaos, Solitons & Fractals, 142, 110375 (2021). https://doi.org/10.1016/j.chaos.2020.110375

  7. Dubey, V.P., Kumar, D., Dubey, S.: A modified computational scheme and convergence analysis for fractional order hepatitis E virus model. In: Advanced Numerical Methods for Differential Equations 279–312 (2021)

    Google Scholar 

  8. Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Forecasting the behavior of fractional order Bloch equations appearing in NMR flow via a hybrid computational technique. Chaos, Solitons Fractals 164, 112691 (2022)

    Article  MathSciNet  Google Scholar 

  9. Dubey, S., Dubey, V.P., Singh, J., Alshehri, A.M., Kumar, D.: Computational study of a local fractional Tricomi equation occurring in fractal transonic flow. J. Comput. Nonlinear Dyn. 17(8), 081006 (2022)

    Article  Google Scholar 

  10. Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Numerical investigation of fractional model of phytoplankton-toxic phytoplankton-zooplankton system with convergence analysis. Int. J. Biomath. 15(04), 2250006 (2022)

    Article  MathSciNet  Google Scholar 

  11. Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Analysis and fractal dynamics of local fractional partial differential equations occurring in physical sciences. J. Comput. Nonlinear Dyn. 18(3), 031001 (2023)

    Article  Google Scholar 

  12. EEA. (2023) Air pollution: how it affects our health. https://www.eea.europa.eu/themes/air/health-impacts-of-air-pollution

  13. EPA. (2023) Research on Health Effects from Air Pollution. https://www.epa.gov/air-research/research-health-effects-air-pollution

  14. Guarnieri, M., Balmes, J.R.: Outdoor air pollution and asthma. The Lancet 383(9928), 1581–1592 (2014)

    Article  Google Scholar 

  15. Guo, L.C., et al.: The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environ. Pollut. 215, 195–202 (2016)

    Article  Google Scholar 

  16. Hubai, K., Kováts, N., Teke, G.: Effects of urban atmospheric particulate matter on higher plants using Lycopersicon esculentum as model species. SN Appl. Sci. 3(9), 770 (2021)

    Article  Google Scholar 

  17. Ianniello, A., Spataro, F., Esposito, G., Allegrini, I., Hu, M., Zhu, T.: Chemical characteristics of inorganic ammonium salts in PM 2.5 in the atmosphere of Beijing (China). Atmos. Chem. Phys. 11(21), 10803–10822 (2011). https://doi.org/10.5194/acp-11-10803-2011

  18. Kesavachandran, C., et al.: Particulate matter concentration in ambient air and its effects on lung functions among residents in the National Capital Region. India. Environ. Monitor. Assess.ment 185, 1265–1272 (2013)

    Article  Google Scholar 

  19. Kim, S., Hong, K.H., Jun, H., Park, Y.J., Park, M., Sunwoo, Y.: Effect of precipitation on air pollutant concentration in Seoul. Korea. Asian J. Atmos. Environ. 8(4), 202–211 (2014)

    Article  Google Scholar 

  20. Koziel, J.A., Aneja, V.P., Baek, B.H.: Gas-to-particle conversion process between ammonia, acid gases, and fine particles in the atmosphere. Animal Agric. Environ. 201–224 (2006). https://doi.org/10.13031/2013.20254

  21. Ku, J.M., et al.: Preliminary results of cloud seeding experiments for air pollution reduction in 2020. Asia-Pacific J. Atmos. Sci. 59, 347–358 (2023)

    Google Scholar 

  22. Kumar, D., Dubey, V.P., Dubey, S., Singh, J., Alshehri, A.M.: Computational analysis of local fractional partial differential equations in realm of fractal calculus. Chaos, Solitons & Fractals, 167, 113009 (2023). https://doi.org/10.1016/j.chaos.2022.113009

  23. Kurt, O.K., Zhang, J., Pinkerton, K.E.: Pulmonary health effects of air pollution. Curr. Opin. Pulm. Med. 22(2), 138 (2016)

    Article  Google Scholar 

  24. Luan, T., Guo, X., Zhang, T., Guo, L.: Below-cloud aerosol scavenging by different-intensity rains in Beijing city. J. Meteorol. Res. 33(1), 126–137 (2019)

    Article  Google Scholar 

  25. Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E.: Environmental and health impacts of air pollution: a review. Front. Public Health 8, 14 (2020)

    Article  Google Scholar 

  26. Naresh, R., Sundar, S., Shukla, J.B.: Modeling the removal of primary and secondary pollutants from the atmosphere of a city by rain. Appl. Math. Comput. 179(1), 282–295 (2006)

    MathSciNet  Google Scholar 

  27. Naresh, R., Sundar, S., Shukla, J.B.: Modeling the removal of gaseous pollutants and particulate matters from the atmosphere of a city. Nonlinear Anal. Real World Appl. 8(1), 337–344 (2007)

    Article  MathSciNet  Google Scholar 

  28. Oduber, F., et al.: Towards a model for aerosol removal by rain scavenging: the role of physical-chemical characteristics of raindrops. Water Res. 190, 116758 (2021)

    Article  Google Scholar 

  29. Pillai, A.G., et al.: Studies of wet deposition and dustfall at Pune, India. Water Air Soil Pollut. 130, 475–480 (2001)

    Article  Google Scholar 

  30. Pripachkin, D.A., Budyka, A.K.: Influence of aerosol particle parameters on their scavenging from the atmosphere by raindrops. Izv. Atmos. Ocean. Phys. 56, 173–178 (2020)

    Article  Google Scholar 

  31. Ravindra, K., Mor, S., Ameena, Kamyotra, J.S., Kaushik, C.P.: Variation in spatial pattern of criteria air pollutants before and during initial rain of monsoon. Environ. Monitor. Assess. 87, 145–153 (2003)

    Google Scholar 

  32. Roldán-Henao, N., Hoyos, C.D., Herrera-Mejía, L., Isaza, A.: An investigation of the precipitation net effect on the particulate matter concentration in a narrow valley: role of lower-troposphere stability. J. Appl. Meteorol. Climatol. 59(3), 401–426 (2020). https://doi.org/10.1175/JAMC-D-18-0313.1

    Article  Google Scholar 

  33. Seinfeld, J.H.: ES & T books: atmospheric chemistry and physics of air pollution. Environmental science & technology, 20(9), 863–863 (1986). https://doi.org/10.1021/es00151a602

  34. Sharma, S., Kumari, N.: Modeling the impact of rain on population exposed to air pollution. Int. J. Nonlinear Sci. Numer. Simul. 21(3–4), 363–370 (2020)

    Article  MathSciNet  Google Scholar 

  35. Sharma, V.P., Arora, H.C., Gupta, R.K.: Atmospheric pollution studies at Kanpur—suspended particulate matter. Atmos. Environ. (1967) 17(7), 1307–1313 (1983). https://doi.org/10.1016/0004-6981(83)90405-5

  36. Shukla, J.B., Agarwal, M., Naresh, R.: An ecological type nonlinear model for removal mechanism of air pollutants. Precipitation Scavenging Atmos. Surface Exchange 3, 1255–1263 (1992)

    Google Scholar 

  37. Shukla, J.B., Misra, A.K., Sundar, S., Naresh, R.: Effect of rain on removal of a gaseous pollutant and two different particulate matters from the atmosphere of a city. Math. Comput. Model. 48(5–6), 832–844 (2008)

    Article  MathSciNet  Google Scholar 

  38. Shukla, J.B., Swaroop, N., Sundar, S., Naresh, R.: Modelling the effect of traffic pollutants on human population with a control strategy. Modeling Earth Syst. Environ. 6, 2129–2140 (2020)

    Article  Google Scholar 

  39. Sundar, S., Naresh, R., Misra, A.K., Shukla, J.B.: A nonlinear mathematical model to study the interactions of hot gases with cloud droplets and raindrops. Appl. Math. Model. 33(7), 3015–3024 (2009)

    Article  MathSciNet  Google Scholar 

  40. Sundar, S., Sharma, R. K., Naresh, R.: Modelling the role of cloud density on the removal of gaseous pollutants and particulate matters from the atmosphere. Appl. Appl. Math.: An Int. J. (AAM), 8(2), 6(2013)

    Google Scholar 

  41. Sundar, S., Naresh, R.: Modeling the effect of dust pollutants on plant biomass and their abatement from the near earth atmosphere. Modeling Earth Syst. Environ. 3, 1–13 (2017)

    Google Scholar 

  42. Sundar, S., Swaroop, N., Naresh, R., Shukla, J.B.: Modeling and analysis of the effects of gaseous pollutants and particulate matters on human health with control mechanisms. Comput. Ecol. Softw. 11(3), 100 (2021)

    Google Scholar 

  43. Tian, X., Cui, K., Sheu, H.L., Hsieh, Y.K., Yu, F.: Effects of rain and snow on the air quality index, PM2. 5 levels, and dry deposition flux of PCDD/Fs. Aerosol Air Qual. Res. 21(8), 210158 (2021). https://doi.org/10.4209/aaqr.210158

  44. Yang, Y., Zhou, W., Gao, Q., Zhao, D., Liu, X., Wang, Y.: Effects of air pollutants on summer precipitation in different regions of Beijing. Atmosphere 13(1), 1–141 (2022)

    Article  Google Scholar 

  45. Yinusa, A.A., Sobamowo, M.G., Ojolo, S.J., Usman, M.A.: Cloud droplets scavenging of gaseous pollutant from the atmosphere: Nonlinear modelling and analyses. Decision Anal. J. 4, 100089 (2022)

    Article  Google Scholar 

  46. Yoo, J.M., et al.: New indices for wet scavenging of air pollutants (O3, CO, NO2, SO2, and PM10) by summertime rain. Atmos. Environ. 82, 226–237 (2014)

    Article  Google Scholar 

  47. Zhou, Y., Yue, Y., Bai, Y., Zhang, L.: Effects of Rainfall on PM2. 5 and PM10 in the Middle Reaches of the Yangtze River. Adv. Meteorol. 2020 (2020). https://doi.org/10.1155/2020/2398146

Download references

Acknowledgement

Authors are thankful to the reviewers for their constructive suggestions which helped us a lot to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Trivedi .

Editor information

Editors and Affiliations

Appendices

Appendix A

Proof: Taking into consideration the following positive definite function to demonstrate the local stability \(E^*\),

$$\begin{aligned} V=\frac{1}{2}(l_1C_{r1}^2+l_2C_{11}^2+l_3C_{21}^2+l_4C_{p11}^2+l_5C_{p21}^2+l_6C_{a1}^2). \end{aligned}$$
(A1)

where \(C_{r1},C_{11},C_{21},C_{p11},C_{p21}\) and \(C_{a1}\) are the small perturbations about \(E^*\) given below,

$$\begin{aligned} C_r &=C_r^*+C_{r1},C_1=C_1^*+C_{11},C_2=C_2^*+C_{21},C_{p1}=C_{p1}^*+C_{p11},C_{p2}=C_{p2}^*+C_{p21},\\ C_a &=C_a^*+C_{a1}. \end{aligned}$$

and \(l_1,l_2,l_3,l_4,l_5\) and \(l_6\) should be considered specifically as they are positive constants.

Using the linearized system that corresponds to \(E^*\), we differentiate (A1) with regard to ‘t’  and we get,

$$\begin{aligned} \dot{V}=&-l_1(r_0+r_1C_1^*+r_2C_2^*)C_{r1}^2-l_2(\delta _1+\beta _1+\gamma _1C_2^*+\alpha _1C_r^*)C_{11}^2\\ {} &-l_3(\delta _2+\beta _2+\gamma _2C_1^*+\alpha _2C_r^*)C_{21}^2 -l_4(\delta _{p1}+\lambda +\alpha _{p1}C_r^*)C_{p11}^2-l_5(\delta _{p2}+\alpha _{p2}C_r^*)C_{p21}^2\\ {} &-l_6(k+\nu C_r^*)C_{a1}^2-(l_1r_1C_r^*+l_2\alpha _1C_1^*)C_{r1}C_{11}-(l_1r_2C_r^*+l_3\alpha _2C_2^*)C_{r1}C_{21}\\ {} &-l_4 \alpha _{p1}C_{p1}^*C_{r1}C_{p11}-l_5\alpha _{p2}C_{p2}^*C_{r1}C_{p21}+l_6(\alpha _1C_1^*+\alpha _2C_2^*-\nu C_a^*)C_{r1}C_{a1}\\ {} &-(l_2\gamma _1C_1^*+l_3\gamma _2C_2^*)C_{11}C_{21}+l_4\beta _1C_{11}C_{p1}+l_4\beta _2C_{21}C_{p11}+l_5\gamma C_2^*C_{11}C_{p21}\\ {} &+l_5\gamma C_1^*C_{21}C_{p21}+l_5\lambda C_{p11}C_{p21} +l_6\alpha _1C_r^*C_{11}C_{a1}+l_6\alpha _2C_r^*C_{21}C_{a1}. \end{aligned}$$
(A2)

Choosing \(l_1=l_2=l_3=1,\)

  • \( l_4<\frac{\displaystyle 1}{\displaystyle 5}(\delta _{p1}+\lambda +\alpha _{p1}C_r^*)\) \(min\{a_1,a_2,a_3\},\)

  • \(l_5<min\{a_4,a_5,a_6,a_7\}\) and

  • \(l_6<\frac{\displaystyle 4}{\displaystyle 15}(k+\nu C_r^*)\) \( min\{a_8,a_9,a_{10}\}.\)

where,

  • \(a_1=\frac{\displaystyle r_0+r_1C_1^*+r_2C_2^*}{\displaystyle (\alpha _{p1}C_{p1}^*)^2}\) , \(a_2=\frac{\displaystyle \delta _1+\beta _1+\gamma _1C_2^*+\alpha _1C_r^*}{\displaystyle (\beta _1)^2}\) , \(a_3=\frac{\displaystyle \delta _2+\beta _2+\gamma _2C_1^*+\alpha _2C_r^*}{\displaystyle (\beta _2)^2}\) ,

  • \(a_4=\frac{\displaystyle (r_0+r_1C_1^*+r_2C_2^*)(\displaystyle \delta _{p2}+\alpha _{p2}C_r^*)}{\displaystyle 5(\alpha _{p2}C_{p2}^*)^2}\) , \(a_5=\frac{\displaystyle (\delta _1+\beta _1+\gamma _1C_2^*+\alpha _1C_r^*)(\delta _{p2}+\alpha _{p2}C_r^*)}{\displaystyle 5(\gamma C_2^*)^2}\) ,

  • \(a_6=\frac{\displaystyle (\delta _2+\beta _2+\gamma _2C_1^*+\alpha _2C_r^*)(\delta _{p2}+\alpha _{p2}C_r^*)}{\displaystyle 5(\gamma C_1^*)^2}\) , \(a_7=\frac{\displaystyle (\delta _{p1}+\lambda +\alpha _{p1}C_r^*)(\delta _{p2}+\alpha _{p2}C_r^*)l_4}{\displaystyle 4\lambda ^2}\) ,

  • \(a_8=\frac{\displaystyle r_0+r_1C_1^*+r_2C_2^*}{\displaystyle (\alpha _1C_1^*+\alpha _2C_2^*-\nu C_a^*)^2}\) , \(a_9=\frac{\displaystyle \delta _1+\beta _1+\gamma _1C_2^*+\alpha _1C_r^*}{\displaystyle (\alpha _1C_r^*)^2}\) ,

  • \(a_{10}=\frac{\displaystyle \delta _2+\beta _2+\gamma _2C_1^*+\alpha _2C_r^*}{\displaystyle (\alpha _2C_r^*)^2}.\)

If the conditions (16)-(17) are fulfilled, \(\dot{V}\) will be negative definite, indicating that V is a Lyapunov’s function and hence the theorem.

Appendix B

Proof: Assuming the following positive definite function about \(E^*\),

$$\begin{aligned} U&=\frac{1}{2}[m_1(C_r-C_r^*)^2+m_2(C_1-C_1^*)^2+m_3(C_2-C_2^*)^2+m_4(C_{p1}-C_{p1}^*)^2\\ {} & +m_5(C_{p2}-C_{p2}^*)^2+m_6(C_a-C_a^*)^2]. \end{aligned}$$
(B1)

where \(m_1 ,m_2 ,m_3 ,m_4,m_5\) and \(m_6\) are to considered approximately as they are positive constants.

After some simplifications, we obtain the following by differentiating U with respect to ‘t’  using Eqs. (16),

$$\begin{aligned} \dot{U}=&-m_1(r_0+r_1C_1+r_2C_2)(C_r-C_r^*)^2-m_2(\delta _1+\beta _1+\gamma _1C_2+\alpha _1C_r)(C_1-C_1^*)^2\\ {} &-m_3(\delta _2+\beta _2+\gamma _2C_1+\alpha _2C_r)(C_2-C_2^*)^2-m_4(\delta _{p1}+\lambda +\alpha _{p1}C_r)(C_{p1}-C_{p1}^*)^2\\ {} &-m_5(\delta _{p2}+\alpha _{p2}C_r)(C_{p2}-C_{p2}^*)^2-m_6(k+\nu C_r)(C_a-C_a^*)^2\\ {} &-(m_1r_1C_r^*+m_2\alpha _1C_1^*)(C_r-C_r^*)(C_1-C_1^*)\\ {} &-(m_1r_2C_r^*+m_3\alpha _2C_2^*)(C_r-C_r^*)(C_2-C_2^*)\\ {} &-m_4\alpha _{p1}C_{p1}^*(C_r-C_r^*)(C_{p1}-C_{p1}^*)-m_5\alpha _{p2}C_{p2}^*(C_r-C_r^*)(C_{p2}-C_{p2}^*)\\ {} &+m_6(\alpha _1C_1^*+\alpha _2C_2^*-\nu C_a^*)(C_r-C_r^*)(C_a-C_a^*)\\ {} &-(m_2\gamma _1C_1^*+m_3\gamma _2C_2^*)(C_1-C_1^*)(C_2-C_2^*)+m_4\beta _1(C_1-C_1^*)(C_{p1}-C_{p1}^*)\\ {} &+m_4\beta _2(C_2-C_2^*)(C_{p1}-C_{p1}^*)+ m_5\gamma C_2^*(C_1-C_1^*)(C_{p2}-C_{p2}^*)\\ {} &+m_5\gamma C_1(C_2-C_2^*)(C_{p2}-C_{p2}^*)+m_5\lambda (C_{p1}-C_{p1}^*)(C_{p2}-C_{p2}^*)\\ {} &+m_6\alpha _1C_r(C_1-C_1^*)(C_a-C_a^*)+m_6\alpha _2C_r(C_2-C_2^*)(C_a-C_a^*). \end{aligned}$$
(B2)

Using minimum and maximum values of the variables involved in the model system and some manipulation, after choosing the following

  • \(m_1=m_2=m_3=1\),

  • \(m_4<\frac{\displaystyle 1}{\displaystyle 5}(\delta _{p1}+\lambda )\) \(min\{b_1,b_2,b_3\},\)

  • \(m_5<min\{b_4,b_5,b_6,b_7\}\) and

  • \(m_6<\frac{\displaystyle 4}{\displaystyle 15}k\) \(min\{b_8,b_9,b_{10}\},\)

where,

  • \(b_1=\frac{\displaystyle r_0}{\displaystyle (\alpha _{p1}C_{p1}^*)^2}\) , \(b_2=\frac{\displaystyle \delta _1+\beta _1}{\displaystyle \beta _1^2}\) , \(b_3=\frac{\displaystyle \delta _2+\beta _2}{\displaystyle \beta _2^2}\) , \(b_4=\frac{\displaystyle r_0\delta _{p2}}{\displaystyle 5(\alpha _{p2}C_{p2}^*)^2}\) , \(b_5=\frac{\displaystyle (\delta _1+\beta _1)\delta _{p2}}{\displaystyle 5(\gamma C_2^*)^2}\) ,

  • \(b_6=\frac{\displaystyle (\delta _2+\beta _2)\delta _{p2}}{ \displaystyle 5(\gamma Q_1 / (\delta _1+\beta _1))^2}\) , \(b_7=\frac{\displaystyle (\delta _{p1}+\lambda )\delta _{p2}m_4}{\displaystyle 4\lambda ^2}\)  , \(b_8=\frac{\displaystyle r_0}{\displaystyle (\alpha _1C_1^*+\alpha _2C_2^*-\nu C_a^*)^2}\) ,

  • \(b_9=\frac{\displaystyle \delta _1+\beta _1}{\displaystyle (\alpha _1q /r_0)^2}\)  , \(b_{10}=\frac{\displaystyle \delta _2+\beta _2}{\displaystyle (\alpha _2q /r_0)^2}.\)

If the conditions (19) – (21) are satisfied in the specified region of attraction \(\varOmega \), \(\dot{U}\) will be negative definite, indicating that U is a Lyapunov’s function and proving the theorem.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trivedi, M., Tripathi, R.N., Sundar, S. (2024). Modeling the Removal by Rain of Two Interacting Gases Forming Distinct Particulate Matters in the Atmosphere. In: Singh, J., Anastassiou, G.A., Baleanu, D., Kumar, D. (eds) Advances in Mathematical Modelling, Applied Analysis and Computation . ICMMAAC 2023. Lecture Notes in Networks and Systems, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-031-56304-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56304-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56303-4

  • Online ISBN: 978-3-031-56304-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics