Skip to main content

Impact of Vertical Magnetic Field on the Rivlin-Ericksen Fluid Interface: An Irrotational Flow Approach

  • Conference paper
  • First Online:
Advances in Mathematical Modelling, Applied Analysis and Computation (ICMMAAC 2023)

Abstract

This study explores the influence of a magnetic field that is perpendicular to the interface on the Rayleigh-Taylor instability. The analysis focuses on electrically conducting and incompressible fluids, specifically a viscoelastic liquid in the upper region and a viscous fluid in the lower region. To investigate the problem, the irrotational flow theory is used, which accounts for viscosity through normal stress balance and does not consider tangential stresses or impose no-slip conditions at the rigid boundaries. Using Rivlin-Ericksen’s model for the viscoelastic liquid, a second-order dispersion relation is derived and numerically analyzed to determine the growth rate of the instability. Several plots are generated using the dispersion relation, and the stability of the interface is discussed for various physical parameters. The study reveals that the inertial forces contribute to the instability of the interface, while surface forces tend to stabilize it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(\rho _{t1}\):

Density of upper fluid layer

\(\rho _{t2}\):

density of lower fluid layer

\(\mu _{t1}\):

viscosity of upper fluid layer

\(\mu _{t2}\):

viscosity of lower layer fluid

\(\mu '_{t1}\):

viscoelasticity of viscoelastic fluid

\(\sigma \):

surface tension

\(\psi _{t1}\):

maganetic potential function for lower fluid layer

\(p_{t1}\):

pressure in viscoelastic fluid layer

\(p_{t2}\):

pressure in viscous fluid layer

\(\ell \):

surface elevation

\({\textrm{h}}_{{\textrm{t1}}}\)::

thikness of Rivilin - Ericksen fluid

\({\textrm{h}}_{{\textrm{t2}}}\)::

thikness of viscous fluid

\(\omega \):

growth rate of disturbances

\(H_{t1} ,H_{t2}\)::

maganetic field intensity in upper layer and lower layer respectively

\(\psi _{t2}\):

maganetic potential function for viscous fluid layer

\({\textrm{k }}\):

wave number

\(\varphi _{t2}\):

potential function for viscous fluid layer

\(\varphi _{t1}\):

potential function for viscoelastic fluid layer

\(\tau \):

stress tensor

\({\textrm{D}}\):

deformation rate tensor

\(D_T\):

upper convected derivative

\(q_{t1}\):

velosity of upper fluid layer

\(q_{t2}\):

velosity of lower fluid layer

References

  1. El-Dib, Y.O.: Nonlinear gravity-capillary waves instability in superposed magnetic fluids influenced by a vertical magnetic field and time-dependent acceleration. Fluid Dyn. Res. 15(6), 385 (1995)

    Google Scholar 

  2. Moatimid, G.M., El-Dib, Y.O.: Kelvin-Helmholtz instability of miscible ferrofluids. Int. J. Theor. Phys. 35(425–443), 15 (1996)

    Google Scholar 

  3. Elhefnawy, A.R.F.: The nonlinear stability of mass and heat transfer in magnetic fluids. ZAMM 77(19–31), 16 (1997)

    Google Scholar 

  4. Devi, S.A., Hemamalini, P.T.: Nonlinear Rayleigh-Taylor instability of two superposed magnetic fluids under parallel rotation and a normal magnetic field. J. Magn. Magn. Mater. 314(2), 135–139 (2007)

    Article  Google Scholar 

  5. Moatimid, G.M.: On the stability of two rigidly rotating magnetic fluid columns in zero gravity in the presence of mass and heat transfer. J. Colloid Interface Sci. 250, 108–120 (2002)

    Article  Google Scholar 

  6. Shukla, A.K., Awasthi, M.K.: Rayleigh-Taylor instability with vertical magnetic field and heat transfer. In: AIP Conference Proceedings. vol. 2352(1). AIP Publishing (2021)

    Google Scholar 

  7. Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability. Dover, New York (1981)

    Google Scholar 

  8. Drazin, P.G., Reid, W.H.: Hydrodynamic stability. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  9. Lewis, D.J.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes.11. Proc. R. Soc. Lond. Ser. A 201, 81–96 (1950)

    Google Scholar 

  10. Rivlin, R.S., Ericksen, J.L.: Stress-deformation relaxations for isotropic materials. J. Ration. Mech. Anal. 4, 323–329 (1955)

    Google Scholar 

  11. Srivastava, R.K., Singh, K.K.: Drag on a sphere oscillating in a conducting dusty viscous fluid in presence of the uniform magnetic field. Bull. Calcutta Math. Soc. 80, 286–291 (1988)

    Google Scholar 

  12. Sharma, R.C., Kumar, P.: Thermal instability in rivlin-ericksen elastico-viscous fluid in hydromagnetics. Z. Naturforsch. 52(6–7), 528–532 (1997)

    Article  Google Scholar 

  13. Shukla, A.K., Awasthi, M.K., Asthana, R.: Rayleigh-taylor instability at viscous gas-viscoelastic fluid interface with heat and mass transfer. Mater. Today: Proc. 46, 10217–10220 (2021)

    Google Scholar 

  14. Awasthi, M.K., Shukla, A.K., Yadav, D.: Rayleigh instability of power-law viscoelastic liquid with heat and mass transfer. Int. Commun. Heat Mass Transfer 129, 105657 (2021)

    Article  Google Scholar 

  15. Shukla, A.K., Awasthi, M.K.: Interfacial characteristics of powerlaw viscoelastic fluid with heat and mass transfer in planar configuration. ASME J. Fluids Eng. 144(10), 101303 (2022)

    Article  Google Scholar 

  16. Shukla, A.K., Awasthi, M.K., Singh, S.: Impact of heat and mass transport on Rayleigh-Taylor instability of Walter’s B viscoelastic fluid layer. Microgravity Sci. Technol. 35(1), 3 (2023)

    Article  Google Scholar 

  17. Joseph, D.D., Liao, T.: Potential flows of viscous and viscoelastic fluids. J. Fluid Mech. 256, 1–23 (1994)

    Article  MathSciNet  Google Scholar 

  18. Joseph, D.D., Belanger, J., Beavers, G.S.: Breakup of a liquid drop suddenly exposed to a high-speed airstream. Int. J. Multiph. Flow 25(6–7), 1263–1303 (1999)

    Article  Google Scholar 

  19. Joseph, D.D., Beavers, G.S., Funada, T.: Rayleigh-Taylor instability of viscoelastic drops at high Weber numbers. J. Fluid Mech. 453, 109–132 (2002)

    Article  Google Scholar 

  20. Awasthi, M.K.: Study on electrohydrodynamic capillary instability of viscoelastic fluids with radial electric field. Int. J. App. Mech. 6, 1450037 (2014)

    Article  Google Scholar 

  21. Moatimid, G.M., Zekry, M.H.: Nonlinear stability of electrovisco-elastic Walters’ B type in porous media. Microsyst. Technol. 26, 2013–2027 (2020)

    Article  Google Scholar 

  22. Makinde, O.D.: On the Chebyshev collocation spectral approach to stability of fluid flow in a porous medium. Int. J. Numer. Meth. Fluids 59(7), 791–799 (2009)

    Article  MathSciNet  Google Scholar 

  23. Makinde, O.D., Mhone, P.Y.: On temporal stability analysis for hydromagnetic flow in a channel filled with a saturated porous medium. Flow Turbul. Combust. 83, 21–32 (2009)

    Article  Google Scholar 

  24. Makinde, O.D., Mhone, P.Y.: Temporal stability of small disturbances in MHD Jeffery-Hamel flows. Comput. Math. Appl. 53(1), 128–136 (2007)

    Article  MathSciNet  Google Scholar 

  25. Shukla, A.K., Awasthi, M.K., Agarwal, S.: Stability analysis of spherical viscous fluid-Oldroyd B viscoelastic fluid interface: a viscous potential flow approach. Chin. J. Phys. 86, 148–159 (2023)

    Article  MathSciNet  Google Scholar 

  26. Gupta, S., Kumar, D., Singh, J.: Analytical study for MHD flow of Williamson nanofluid with the effects of variable thickness, nonlinear thermal radiation and improved Fourier’s and Fick’s Laws. SN Applied Sciences 2(3), 438 (2020)

    Article  Google Scholar 

  27. Tassaddiq, A., Khan, I., Nisar, K.S., Singh, J.: MHD flow of a generalized Casson fluid with Newtonian heating: a fractional model with Mittag-Leffler memory. Alex. Eng. J. 59(5), 3049–3059 (2020)

    Article  Google Scholar 

  28. Sheikh, N.A., Ching, D.L.C., Khan, I., Kumar, D., Nisar, K.S.: A new model of fractional Casson fluid based on generalized Fick’s and Fourier’s laws together with heat and mass transfer. Alex. Eng. J. 59(5), 2865–2876 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shukla, A.K., Awasthi, M.K., Dharamendra (2024). Impact of Vertical Magnetic Field on the Rivlin-Ericksen Fluid Interface: An Irrotational Flow Approach. In: Singh, J., Anastassiou, G.A., Baleanu, D., Kumar, D. (eds) Advances in Mathematical Modelling, Applied Analysis and Computation . ICMMAAC 2023. Lecture Notes in Networks and Systems, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-031-56304-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56304-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56303-4

  • Online ISBN: 978-3-031-56304-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics