Skip to main content

Numerical Investigation of Radiation and Magnetic Effects on Casson Fluid Flow Over a Porous Sheet in Presence of Constant Mass Flux

  • Conference paper
  • First Online:
Advances in Mathematical Modelling, Applied Analysis and Computation (ICMMAAC 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 953))

  • 27 Accesses

Abstract

The present research article focuses on the impacts due to magnetic and radiation parameter on the steady 2D Casson fluid flow along a porous/permeable plate which is flat in nature. A uniform magnetic field of strength \(B_{0}\) is assumed to be applied normal to the sheet. It is assumed that the flow in the laminar boundary layer is two-dimensional. In this study, we have used similarity transformation by changing partial differential equations (PDEs) into ordinary differential equations (ODEs). ODEs are solved then using bvp4c package in MATLAB with a shooting approach. Physical quantities of engineering, science and industry interest, like Sherwood and Nusselt number, skin/surface friction are calculated for the prescribed fluid flow. Line graphs of concentration, velocity and temperature distribution are produced for abundant non-dimensional parameters included in the study. Later on, we have discussed outcomes of all parameters on the flow.

Here, results show that velocity of Casson fluid reduces with rising magnetic parameter and grows with increasing radiation parameter. Temperature increases as both radiation and magnetic parameter increase. Magnetic parameter also enhances the Casson fluid’s concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(T\) = :

Temperature of fluid \(\left( K \right)\)

\(T_{w}\) = :

Constant temperature at surface of the sheet \(\left( K \right)\)

\(T_{\infty }\) = :

Temperature in the free stream \(\left( K \right)\)

\(C\) = :

Concentration of fluid

\(C_{w}\) = :

Concentration at the surface of the sheet

\(C_{\infty }\) = :

Concentration in the free stream

\(u\) = :

Velocity component in \(X\) direction

\(v\) = :

Velocity component in \(Y\) direction

\(\theta\) = :

Temperature

\(\sigma\) = :

Stefan Boltzman constant \(\left( {Wm^{ - 2} K^{ - 4} } \right)\)

\(M\) = :

Magnetic parameter

\(\Pr\) = :

Prandtl number

\({\text{Re}}\) = :

Reynold number

\(\nu\) = :

Kinematic viscosity \(\left( {m^{2} s^{ - 1} } \right)\)

\(D_{B}\) = :

Coefficient of Brownian diffusion

\(\alpha\) = :

Thermal diffusivity

\(B_{0}\) = :

Normal strength of magnetic field applied to sheet which is uniformly distributed

\(\rho\) = :

Fluid density \(\left( {Kgm^{ - 3} } \right)\)

\(C_{p}\) = :

Specific heat (at constant pressure)

\(k_{0}\) = :

Constant of chemical reaction rate

\(\beta_{C}\) = :

Solutal expansion coefficient

\(\sigma\) = :

Fluid’s Electric conductivity

\(K^{\prime}\) = :

Coefficient of Permeability (porous medium)

\(g\) = :

Gravitational acceleration

\(q_{r}\) = :

Radiative heat flux \(\left( {Wm^{ - 2} K^{ - 1} } \right)\)

\(\beta_{T}\) = :

Coefficient of thermal expansion

\(\infty\):

Conditions at the free stream or far from the wall

\(w\):

Conditions at the wall/surface

References

  1. Kuznetsov, A.V., Nield, D.A.: Natural convection boundary layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 40, 115–124 (2001)

    Google Scholar 

  2. Bhattacharya, K.: Effects of heat source/sink on MHD flow and heat transfer over a shrinking sheet with mass suction. Chem. Eng. Res. Bull. 15(1), 12–17 (2011)

    Article  Google Scholar 

  3. Nadeem, S., Haq, R.L., Akbar, N.S., Khan, Z.H.: MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alex. Eng. J. 52, 577–582 (2013)

    Article  Google Scholar 

  4. Sulochana, C., Kishor, M.K., Sandeep, N.: Nonlinear thermal radiation and chemical reaction effects on MHD 3D casson fluid flow in porous medium. Chem. Process Eng. Res. 37, 24–36 (2015)

    Google Scholar 

  5. Arthur, E.M., Seini, I.Y., Bortteir, L.B.: Analysis of casson fluid flow over a vertical porous surface with chemical reaction in the presence of magnetic field. J. Appl. Math. Phys. 3, 713–723 (2015)

    Article  Google Scholar 

  6. Pushpalatha, K., Sugunamma, V., Reddy, J.V., Sandeep, N.: Heat and mass transfer in unsteady MHD Casson fluid flow with convective boundary conditions. Int. J. Adv. Sci. Technol. 91, 19–38 (2016)

    Article  Google Scholar 

  7. Reza, M., Chahal, R., Sharma, N.: Radiation effect on MHD Casson fluid flow over a power-law stretching sheet with chemical reaction. Eng. Technol. Int. J. Chem. Molecul. Eng. 10(5), 585–590 (2016)

    Google Scholar 

  8. Kumar, G.C., Dharmaiah, G., Balamurugan, K.S., Vedavathi, N.: Chemical reaction and Soret effects on Casson MHD fluid flow over a vertical plate. Int. J. Chem. Sci. 14(1), 213–221 (2016)

    Google Scholar 

  9. Kataria, H., Patel, H.: Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in a porous medium. Alex. Eng. J. (2016). https://doi.org/10.1016/j.aej.2016.01.019

    Article  Google Scholar 

  10. Kumar, C.K., Srinivas, S.: Simultaneous effects of thermal radiation and chemical reaction on hydromagnetic pulsatile flow of a casson fluid in a porous space. Eng. Trans. 65(3), 461–481 (2017)

    MathSciNet  Google Scholar 

  11. Balakrishna, S., Mohan, S.R., Reddy, G.V., Varma, S.V.K.: Effects of chemical reaction on unsteady MHD Casson fluid flow past a moving infinite inclined plate through porous medium. IJESC 8(7), 18658–18666 (2018)

    Google Scholar 

  12. Rao, M.E.: The effects of thermal radiation and chemical reaction on MHD flow of a Casson fluid over an exponentially inclined stretching surface. J. Phys: Conf. Ser. 1000, 1–14 (2018). https://doi.org/10.1088/1742-6596/1000/1/012158

    Article  Google Scholar 

  13. Khan, D., Khan, A., Khan, I., Ali, F., Karim, F., Tlili, I.: Effects of relative magnetic field, chemical reaction, heat generation and Newtonian heating on convection flow of Casson fluid over a moving vertical plate embedded in a porous medium. Publ. Sci. Rep. 400, 1–18 (2019). https://doi.org/10.1038/s41598-018-36243-0

    Article  Google Scholar 

  14. Omokhuale, E., Jabaka, M.L.: Magnetohydrodynamic Casson fluid flow over an infinite vertical plate with chemical reaction and heat generation. Am. J. Comput. Math. 9, 187–200 (2019). https://doi.org/10.4236/ajcm.2019.93014

    Article  Google Scholar 

  15. Suresh, P., Krishna, Y.H., Rao, R.S., Reddy, P.V.J.: Effect of chemical reaction and radiation on MHD flow along a moving vertical porous plate with heat source and suction. Int. J. Appl. Eng. Res. 14(4), 869–876 (2019)

    Google Scholar 

  16. Rao, S.R., Vidyasagar, G., Deekshitulu, G.V.S.R.: Viscous and Joule dissipation on MHD Casson fluid flow past an exponentially accelerated vertical porous plate with radiation absorption and chemical reaction in the presence of Soret effects. High Technol. Lett. 26(5), 392–401 (2020)

    Google Scholar 

  17. Manjula, V., Sekhar, K.V.C.: Analysis of heat and mass transfer on steady MHD Casson fluid flow past an inclined porous stretching sheet with viscous dissipation and thermal radiation. Int. J. Mech. Prod. Eng. Res. Develop. 10(3), 281–292 (2020)

    Google Scholar 

  18. Deka, A.K.: In the presence of thermal radiation through porous medium unsteady MHD Casson fluid flow past an accelerated vertical plate. Int. J. Statist. Appl. Math. 5(4), 213–228 (2020)

    MathSciNet  Google Scholar 

  19. Sakthikala, R., Lavanya, V.: “MHD oscillatory flow of non Newtonian fluid through porous medium in the presence of radiation and chemical diffusion with hall effects. Int. J. Emerg. Technol. 11(2), 1093–1099 (2020)

    Google Scholar 

  20. Vijayaragavan, R., Ramesh, M., Karthikeyan, S.: Heat and mass transfer investigation on MHD Casson fluid flow past an inclined porous plate in the effects of Dufour and chemical reaction. J. Xi’an Univ. Architect. Technol. 13(6), 860–873 (2021)

    Google Scholar 

  21. Vijayaragavana, R., Bharathi, V., Prakash, J.: Heat and mass transfer effect of a Magnetohydrodynamic Casson fluid flow in presence of inclined plate. Indian J. Pure Appl. Phys. 59, 28–39 (2021)

    Google Scholar 

  22. Sridhar, W., Ganesh, G.R., Rao, B.V.A., Gorfie, E.H.: Mixed convection boundary layer flow of MHD Casson fluid on an upward stretching sheet encapsulated in a porous medium with slip effects. JP J. Heat Mass Transf. 22(2), 133–149 (2021)

    Article  Google Scholar 

  23. Rasheed, H.U., Islam, S., Zeeshan, K.W., Khan, J., Abbas, T.: Numerical modeling of unsteady MHD flow of Casson fluid in a vertical surface with chemical reaction and hall current. Adv. Mech. Eng. 14(3), 1–10 (2022)

    Article  Google Scholar 

  24. Talla, H., Fatima: Magnetic field influence on radiative Casson fluid flow over an exponential stretching surface. J. Pharmaceut. Negat. Results 13(6), 1881–1888 (2022)

    Article  Google Scholar 

  25. Reddy, L.R.M., Reddy, P.R.K., Reddy, P.C., Raju, M.C.: MHD Casson fluid flow past an upright plate under the impact of the heat sink and chemical reaction. Adv. Appl. Math. Sci. 21(10), 5865–5878 (2022)

    Google Scholar 

  26. Jain, S., Sharma, S.: Chemical reaction effect on MHD Casson fluid flow with Newtonian heating and heat source over a vertical plate. Int. J. Mech. Eng. 7, 793–804 (2022)

    Google Scholar 

  27. Mopuri O., et al.: Unsteady MHD on convective flow of a Newtonian fluid past an inclined plate in presence of chemical reaction with radiation absorption and dufour effects. CFD Lett. 14(7), 62–76 (2022). https://doi.org/10.37934/cfdl.14.7.6276

  28. Yasin, M.H.M., Ishak, A., Pop, I.: MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect. J. Magn. Magn. Mater. 407, 235–240 (2016). https://doi.org/10.1016/j.jmmm.2016.01.087

    Article  Google Scholar 

  29. Bhattacharyya, K., Hayat, T., Alsaedi, A.: Exact solution for boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet. Zeitschrift fĂĽr Angewandte Mathematik und Mechanik (2013)

    Google Scholar 

  30. Nakamura, M., Sawada, T.: Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis. J. Biomech. Eng. 110(2), 137–143 (1988)

    Article  Google Scholar 

  31. Neemawat, A., Sushila: Non-similarity solutions of MHD boundary layer flow. ICMMAAC 666, 508–521 (2023). https://doi.org/10.1007/978-3-031-29959-9_33

    Article  Google Scholar 

  32. Jat, R.N., Neemawat, A.: Similarity solution for MHD stagnation point flow and heat transfer over a non-linear Stretching sheet. IJRRR 3, 32–51 (2012)

    Google Scholar 

  33. Jat, R.N., Neemawat, A., Rajotia, D.: MHD boundary layer flow and heat transfer over a continuously moving flat plate. IJSAM 3(3), 102–108 (2012)

    Google Scholar 

  34. Jat, R.N., Neemawat, A., Rajotia, D.: MHD flow with heat transfer due to a point sink. J. Ultra Sci. Phys. Sci. 25(1A), 199–206 (2013)

    Google Scholar 

  35. Jat, R.N., Neemawat, A.: MHD boundary layer flow and heat transfer over a moving non-isothermal flat plate. Computat. Math. Modell. 25, 514–520 (2014). https://doi.org/10.1007/s10598-014-9245-y

    Article  MathSciNet  Google Scholar 

  36. Jangid, S., Mehta, R., Kumar, D.: Numerical study of viscous dissipation, suction/injection effects and Dufour number also with chemical reaction impacts of MHD Casson nanofluid in convectively heated non-linear extending surface. J. Comput. Anal. Appl. 30(1), 290–311 (2022)

    Google Scholar 

  37. Gupta, S., Kumar, D., Singh, J.: Analytical study for MHD flow of Williamson nanofluid with the effects of variable thickness, nonlinear thermal radiation and improved Fourier’s and Fick’s Laws. SN Appl. Sci. 2, 438 (2020)

    Article  Google Scholar 

  38. Tassaddiq, A., Khan, I., Nisar, K.S., Singh, J.: MHD flow of a generalized Casson fluid with Newtonian heating: a fractional model with Mittag-Leffler memory. Alex. Eng. J. 59(5), 3049–3059 (2020)

    Article  Google Scholar 

  39. Sushila, S.J., Kumar, D., Baleanu, D.: A hybrid analytical algorithm for thin film flow problem occurring in non-Newtonian fluid mechanics. Ain Shams Eng. J. 12(2), 2297–2302 (2021)

    Article  Google Scholar 

  40. Ferraro, V.C.A., Plumton, C.: An Introduction to Magneto Fluid Mechanics, 2nd edn., p. 58. Oxford University Press (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neemawat, A., Jain, N., Sushila (2024). Numerical Investigation of Radiation and Magnetic Effects on Casson Fluid Flow Over a Porous Sheet in Presence of Constant Mass Flux. In: Singh, J., Anastassiou, G.A., Baleanu, D., Kumar, D. (eds) Advances in Mathematical Modelling, Applied Analysis and Computation . ICMMAAC 2023. Lecture Notes in Networks and Systems, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-031-56304-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56304-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56303-4

  • Online ISBN: 978-3-031-56304-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics