Skip to main content

Oxidation Flow Reactor for Simulating and Accelerating Atmospheric Secondary Aerosol Formation

  • Chapter
  • First Online:
Technical and Technological Solutions Towards a Sustainable Society and Circular Economy

Abstract

Oxidation flow reactors (OFRs) is widely employed in both atmospheric chemistry and physic studies, it’s used to simulate and accelerate the formation of secondary organic aerosols (SOAs), that constituted the major fraction of PM2.5. The SOA is formed by complex gas-phase and heterogeneous oxidation reactions between volatile organic compounds (VOCs) emitted from natural and anthropogenic sources and atmospheric oxidants like ozone O3 and OH radicals. OFR simulates atmospheric environment processes such as photochemistry by exposing VOCs to a combination of oxidizing agents such as nitrate radical NO3, ozone O3, and hydroxyl radicals OH and sometimes using also ultraviolet radiation to simulate pollutants transformation under solar radiation. This promotes the formation of highly oxidized organic molecules with low volatility, which can condense in the particulate (solid) phase contributing to SOA particle formation and growth. The advantage of OFRs facing other tools like environmental chambers is their ability to precisely control reaction parameters such as temperature, humidity, and reactant concentrations, allowing systematic studies of SOA formation under a long range of conditions. In addition, OFRs can be used to study the contributions of different VOC sources to SOA formation and to evaluate the effectiveness of mitigation strategies aimed at reducing SOA emissions. The results obtained from OFR experiments can be compared with field measurements to improve our understanding of the processes that govern SOA formation in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlberg, E., Eriksson, A., Brune, W.H., Roldin, P., Svenningsson, B.: Effect of salt seed particle surface area, composition and phase on secondary organic aerosol mass yields in oxidation flow reactors. Atmos. Chem. Phys. 19, 2701–2712 (2018). https://doi.org/10.5194/acp-19-2701-2019

  2. Chen, S., Brune, W.H., Lambe, A.T., Davidovits, P., Onasch, T.B.: Modeling organic aerosol from the oxidation of α-pinene in a Potential Aerosol Mass (PAM) chamber. Atmos. Chem. Phys. 13(9), 5017–5031 (2013). https://doi.org/10.5194/acp-13-5017-2013

    Article  CAS  Google Scholar 

  3. Chhabra, P.S. Lambe, A.T., Canagaratna, M.R., Stark, H., Jayne, J.T., Onasch, T.B., Davidovits, P., Kimmel, J.R., Worsnop, D.R.: Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products. Atmos. Meas. Tech. 8, 1–18 (2015)

    Google Scholar 

  4. Davis, D.D., Ravishankara, A.R., Fischer, S.: SO2 oxidation via the hydroxyl radical: atmospheric fate of HSOx radicals. Geophys. Res. Lett. 6, 113–116 (1979). https://doi.org/10.1029/GL006i002p00113

    Article  CAS  Google Scholar 

  5. Friedman, B., Brophy, P., Brune, W.H., Farmer, D.K.: Anthropogenic sulfur perturbations on biogenic oxidation: SO2 additions impact gas-phase OH oxidation products of α-and β-Pinene. Environ. Sci. Technol. 50(3), 1269–1279 (2016). https://doi.org/10.1021/acs.est.5b05010

    Article  CAS  Google Scholar 

  6. Gulia, S., Shiva Nagendra, S.M., Khare, M., Khanna, I.: Urban air quality management-a review. Atmos. Pollut. Res. 6(2), 286–304 (2015). https://doi.org/10.5094/APR.2015.033

  7. Huang, Y., Coggon, M.M., Zhao, R., Lignell, H., Bauer, M.U., Flagan, R.C., Seinfeld, J.H.: The Caltech Photooxidation Flow Tube reactor: design, fluid dynamics and characterization. Atmos. Meas. Tech. 10, 839–867 (2017)

    Google Scholar 

  8. Huang, Y., Seinfeld, J.H.: A note on flow behavior in axially-dispersed plug flow reactors with step input of tracer. Atmos. Environ. X 1, 1–6 (2019)

    Google Scholar 

  9. Ihalainen, M., Tiitta, P., Czech, H., Yli-Pirilä, P., Hartikainen, A., Kortelainen, M., et al.: A novel high-volume Photochemical Emission Aging flow tube Reactor (PEAR). Aerosol Sci. Technol. 53(3), 276–294 (2019). https://doi.org/10.1080/02786826.2018.1559918

    Article  CAS  Google Scholar 

  10. Jathar, S.H., Friedman, B., Galang, A.A., Link, M.F., Brophy, P., Volckens, J., et al.: Linking load, fuel, and emission controls to photochemical production of secondary organic aerosol from a diesel engine. Environ. Sci. Technol. 51(3), 1377–1386 (2017). https://doi.org/10.1021/acs.est.6b04602

    Article  CAS  Google Scholar 

  11. Kang, E., Root, M.J., Toohey, D.W., Brune, W.H.: Introducing the concept of Potential Aerosol Mass (PAM). Atmos. Chem. Phys. 18 (2007)

    Google Scholar 

  12. Karjalainen, P., Timonen, H., Saukko, E., Kuuluvainen, H., Saarikoski, S., et al.: Time-resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car. Atmos. Chem. Phys. 16(13), 8559–8570 (2016). https://doi.org/10.5194/acp-16-8559-2016

    Article  CAS  Google Scholar 

  13. Lambe, A.T., Ahern, A.T., Williams, L.R., Slowik, J.G., Wong, J.P.S., Abbatt, J.P.D., Brune, W.H., Ng, N.L., Wright, J.P., Croasdale, D.R.: Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements. Atmos. Meas. Tech. 4(3), 445–461 (2011)

    Google Scholar 

  14. Lambe, A.T., Chhabra, P.S., Onasch, T.B., Brune, W.H., Hunter, J.F., Kroll, J.H., Cummings, M.J., et al.: Effect of oxidant concentration, exposure time and seed particles on secondary organic aerosol chemical composition and yield. Atmos. Chem. Phys. 15(6), 3063–3075 (2015)

    Google Scholar 

  15. Lambe, A.T., Onasch, T.B., Croasdale, D.R., Wright, J.P., Martin, A.T., Franklin, J.P., Davidovits, P.: Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors. Environ Sci Technol 46:5430–5437 (2012). https://doi.org/10.1021/es300274t

  16. Laudadio, G., Natan, J.W.S., Menno, D.L., Benny, K., et al.: An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chem. 19, 4061–4066 (2017). https://doi.org/10.1039/C7GC01973D

  17. Li, C., Li, Q., Tong, D., Wang, Q., Wu, M., Sun, B.: Environmental impact and health risk assessment of volatile organic compound emissions during different seasons in Beijing. J. Environ. Sci. 93(5), 1–12 (2020). https://doi.org/10.1016/j.jes.2019.11.006

    Article  CAS  Google Scholar 

  18. Li, R., Palm, B.B, Ortega, A.M., Hlywiak, J., Hu, W., Peng, Z., Day, D.A., Knote, C., Brune, W.H., de Gouw, J., Jimenez, J.L.: Modeling the radical chemistry in an Oxidation Flow Reactor: radical formation and recycling, sensitivities, and OH exposure estimation equation. J. Phys. Chem. A 119(19), 4418–4432 (2015). https://doi.org/10.1021/jp509534k

  19. Lienhard, D.M., Huisman, A.J., Krieger, U.K., Rudich, Y., Marcolli, C., Luo, B.P., Bones, D.L., Reid, J.P., Lambe, A.T., Canagaratna, M.R., Davidovits, P., Onasch, T.B., Worsnop, D.R., Steimer, S.S., Koop, T., Peter, T.: Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation? Atmo. Chem. Phys. 15(13), 13599–13613 (2015). https://doi.org/10.5194/acp-15-13599-2015

    Article  CAS  Google Scholar 

  20. Liu, J., Chu, B., Chen, T., Liu, C., Wang, L., Bao, X., He, H.: Secondary organic aerosol formation from ambient air at an urban site in Beijing: effects of OH exposure and precursor concentrations. Environ. Sci. Technol. 52(12), 6834–6841 (2018). https://doi.org/10.1021/acs.est.7b05701

  21. Murschell, T., Farmer, D.K.: Atmospheric OH oxidation of three chlorinated aromatic herbicides. Environ. Sci. Technol. 52(8), 4583–4591 (2018). https://doi.org/10.1021/acs.est.7b06025

  22. Ningjin, X., Chen, L.D.R., Cocker, D.R.C.: An oxidation flow reactor for simulating and accelerating secondary aerosol formation in aerosol liquid water and cloud droplets Ningjin. Atmos. Meas. Tech. (2023). https://doi.org/10.5194/amt-2022-285

  23. Peng, Z., Day, D.A., Ortega, A.M., Palm, B.B., Hu, W., Stark, H., Li, R., Tsigaridis, K., Brune, W.H., Jimenez, J.L.: Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling. Atmo. Chem. Phys. 16(3), 4283–4305 (2016). https://doi.org/10.5194/acp-16-4283-2016

    Article  CAS  Google Scholar 

  24. Peng, Z., Day, D.A., Stark, H., Li, R., Lee-Taylor, J., Palm, B.B., Brune, W.H., Jimenez, J.L.: HOx radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling. Atmo. Meas. Tech. 8(11), 4863–4890 (2015). https://doi.org/10.5194/amt-8-4863-2015

    Article  CAS  Google Scholar 

  25. Peng, Z., Palm, B.B., Day, D.A., Talukdar, R.K., Hu, W., Lambe, A.T., Brune, W.H., Jimenez, J.L.: Model evaluation of new techniques for maintaining high-NO conditions in oxidation flow reactors for the study of OH-initiated atmospheric chemistry. ACS Earth Space Chem. 2(2), 72–86 (2018). https://doi.org/10.1021/acsearthspacechem.7b00070

    Article  CAS  Google Scholar 

  26. Peng, Z., Jimenez, J.L.: Radical chemistry in oxidation flow reactors for atmospheric chemistry research. Chem. Soc. Rev. 49, 2570–2616 (2020). https://doi.org/10.1039/C9CS00766K

  27. Saha, P.K., Reece, S.M., Grieshop, A.P: Seasonally varying secondary organic aerosol formation from in-situ oxidation of near-highway. Air. Environ. Sci. Technol. 52(13), 7192–7202 (2018). https://doi.org/10.1021/acs.est.8b01134

  28. Sbai, S., Bentayeb, F., Yin, H.: Atmospheric pollutants response to the emission reduction and meteorology during the COVID-19 lockdown in the north of Africa (Morocco). Stoch. Environ. Res. Risk Assess. 36, 3769–3784 (2022). https://doi.org/10.1007/s00477-022-02224-z

    Article  Google Scholar 

  29. Sbai, S.E., Farida, B.: Photochemical aging and secondary organic aerosols generated from limonene in an oxidation flow reactor. Environ. Sci. Pollut. Res. 26(8), 18411–18420 (2019). https://doi.org/10.1007/s11356-019-05012-5

    Article  CAS  Google Scholar 

  30. Sbai, S.E., Li, C., Boreave, A., Charbonnel, N., Perrier, S., Vernoux, P., Bentayeb, F., George, C., Gil, S.: Atmospheric photochemistry and secondary aerosol formation of urban air in Lyon, France. J. Environ. Sci. 99(6), 311–323 (2020). https://doi.org/10.1016/j.jes.2020.06.037

    Article  CAS  Google Scholar 

  31. Sbai, S.E., Mejjad, N., Norelyaqine, A., Bentayeb, F.: Air quality change during the COVID-19 pandemic lockdown over the Auvergne- Rhône-Alpes region, France. Air Qual. Atmos. Health 14, 617–628 (2021). https://doi.org/10.1007/s11869-020-00965-w

    Article  CAS  Google Scholar 

  32. Simonen, P., Saukko, E., Karjalainen, P., Timonen, H., Bloss, M., Aakko-Saksa, P., Dal Maso, M.: A new oxidation flow reactor for measuring secondary aerosol formation of rapidly changing emission sources. Atmos. Meas. Tech. 1–27 (2017). https://doi.org/10.5194/amt-2016-300

  33. Timonen, H., Karjalainen, P., Saukko, E., Saarikoski, S., Aakko-Saksa, P., Simonen, P., Murtonen, T., Dal Maso, M., Kuuluvainen, H., Bloss, M., Ahlberg, E., Svenningsson, B., Pagels, J., Brune, W.H., Keskinen, J., Worsnop, D.R., Hillamo, R., Rönkkö, T.: Influence of fuel ethanol content on primary emissions and secondary aerosol formation potential for a modern flex-fuel gasoline vehicle. Atmos. Chem. Phys. 17(3), 5311–5329 (2017). https://doi.org/10.5194/acp-17-5311-2017.

  34. Tkacik, D.S., Lambe, A.T., Jathar, S., Li, X., Presto, A.A., Zhao, Y., Blake, D., et al.: Secondary organic aerosol formation from in-use motor vehicle emissions using a Potential Aerosol Mass Reactor. Environ. Sci. Technol. 48(19), 11235–11242 (2014). https://doi.org/10.1021/es502239v

    Article  CAS  Google Scholar 

  35. Trueblood, J.V., Wang, X., Or, V.W., Alves, M.R., Santander, M.V., Prather, K.A., Grassian, V.H.: The old and the new: aging of sea spray aerosol and formation of secondary marine aerosol through OH oxidation reactions. ACS Earth Space Chem. 3(10), 2307–2314 (2019). https://doi.org/10.1021/acsearthspacechem.9b00087

  36. Wei, J., Menghua, W., Zhongping, L., Michael, O., Shuai Z., Sherwin, L.: Experimental analysis of the measurement precision of spectral water-leaving radiance in different water types. Opt. Express 29, 2780–2797 (2021)

    Google Scholar 

  37. Xu, N., Collins, D.R.: Design and characterization of a new oxidation flow reactor for laboratory and long-term ambient studies. Atmos. Meas. Tech. 14, 2891–2906 (2021)

    Google Scholar 

  38. Zhang, X., Lambe, A.T., Upshur, M.A., Brooks, W.A., Thomson, R.J., Geiger, F.M., Faz, Z., Surratt, J.D., Graf, S., Groessl, M., Cubison, M., Canagaratna, M.R., Jayne, J.T., Worsnop, D.R.: Highly oxygenated multifunctional compounds in a-pinene secondary organic aerosol. Environ. Sci. Technol. 51(5), 5032–5040 (2017)

    Google Scholar 

  39. Zhang, Y., Xiang, Q., Yu, C., Yang, Z.: Asthma mortality is triggered by short-term exposures to ambient air pollutants: evidence from a Chinese urban population. Atmos. Environ. 223(8), 117271 (2020). https://doi.org/10.1016/j.atmosenv.20290.117271

  40. Zheng, Z., Zhang, C., Liu, K., et al.: Volatile organic compounds, evaluation methods and processing properties for cooked rice flavor. Rice 15, 53 (2022). https://doi.org/10.1186/s12284-022-00602-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Eddine Sbai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sbai, S.E., Mejjad, N., Mabrouki, J. (2024). Oxidation Flow Reactor for Simulating and Accelerating Atmospheric Secondary Aerosol Formation. In: Mabrouki, J., Mourade, A. (eds) Technical and Technological Solutions Towards a Sustainable Society and Circular Economy. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-031-56292-1_43

Download citation

Publish with us

Policies and ethics