Skip to main content

A Survey of Machine and Deep Learning Applications in the Assessment of Water Quality

  • Chapter
  • First Online:
Technical and Technological Solutions Towards a Sustainable Society and Circular Economy

Abstract

Actually, water is an important resource in different domains namely farming, healthcare and tourism, as well as in industry. Every living being is depending on adequate amounts of good quality water for its survival and development. The global water system is driven by both evaporation and transpiration, as well as condensation, rainfall and runoff, and typically reaches the ocean. Predicting water quality based on different parameters is essential for the design, decision making and management of this resource. Over the past two decades, water quality modeling has enjoyed considerable growth through the implementation of machine learning techniques. This review examines the various supervised, unsupervised, semi-supervised, and ensemble machine learning models implemented for the prediction of groundwater quality parameters. Furthermore, this study listed some water domains where machine learning is used to predict and monitor water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nwankwo, C.B., Hoque, M.A., Islam, M.A., Dewan, A.: Groundwater constituents and trace elements in the basement aquifers of Africa and sedimentary aquifers of Asia: medical hydrogeology of drinking water minerals and toxicants. Earth Syst. Environ. 4, 369–384 (2020)

    Article  Google Scholar 

  2. Mancuso, G., Bencresciuto, G.F., Lavrnić, S., Toscano, A.: Diffuse water pollution from agriculture: a review of nature-based solutions for nitrogen removal and recovery. Water 13(14), 1893 (2021)

    Article  CAS  Google Scholar 

  3. Yusuf, M., Purwandani, I.: Ecological politics of water: the ramifications of tourism development in Yogyakarta. South East Asia Res. 28(3), 327–343 (2020)

    Article  Google Scholar 

  4. Fattah, G., Elouardi, M., Benchrifa, M., Ghrissi, F., Mabrouki, J.: Modeling of the coagulation system for treatment of real water rejects. In Advanced Technology for Smart Environment and Energy, Springer, pp. 161–171 (2023)

    Google Scholar 

  5. Mabrouki, J. et al.: Geographic information system for the study of water resources in Chaâba El Hamra, Mohammedia (Morocco). In Artificial Intelligence and Smart Environment: ICAISE’2022, Springer, pp. 469–474 (2023)

    Google Scholar 

  6. Irhza, A., Nassiri, L., El Jarroudi, M., Rachidi, F., Lahlali, R., Echchgadda, G.: Description of the gap between local agricultural practices and agroecological soil management tools in Zerhoun and in the Middle Atlas areas of Morocco. Land 12(2), 268 (2023)

    Article  Google Scholar 

  7. Mohy-Eddine, M., Azrour, M., Mabrouki, J., Amounas, F., Guezzaz, A., Benkirane, S.: Embedded web server implementation for real-time water monitoring. In: J. Mabrouki, A. Mourade, A. Irshad, & S. A. Chaudhry (Eds.), Advanced Technology for Smart Environment and Energy, in Environmental Science and Engineering. Cham: Springer International Publishing, pp. 301–311 (2023). https://doi.org/10.1007/978-3-031-25662-2_24

  8. Ahuja, S.: Water quality worldwide. In Handbook of water purity and quality, Elsevier, pp. 19–33 (2021)

    Google Scholar 

  9. Gachene, C. K., Nyawade, S. O., Karanja, N. N.: Soil and water conservation: an overview. Zero Hunger, pp. 810–823 (2020)

    Google Scholar 

  10. Cabral-Pinto, M.M., et al.: Human health risk assessment due to agricultural activities and crop consumption in the surroundings of an industrial area. Expo. Health 12, 629–640 (2020)

    Article  CAS  Google Scholar 

  11. Hazman, C., Benkirane, S., Guezzaz, A., Azrour, M., Abdedaime, M.: Building an intelligent anomaly detection model with ensemble learning for IoT-based smart cities. In Advanced Technology for Smart Environment and Energy, Springer, pp. 287–299 (2023)

    Google Scholar 

  12. Attou, H., Guezzaz, A., Benkirane, S., Azrour, M., Farhaoui, Y.: Cloud-based intrusion detection approach using machine learning techniques. Big Data Min. Anal. 6(3), 311–320 (2023)

    Article  Google Scholar 

  13. Mabrouki, J. et al.: Smart system for monitoring and controlling of agricultural production by the IoT. In IoT and Smart Devices for Sustainable Environment, Springer, pp. 103–115 (2022)

    Google Scholar 

  14. Chaganti, R., Azrour, M., Vinayakumar, R., Naga, V., Dua, A., Bhushan, B.: A particle Swarm optimization and deep learning approach for intrusion detection system in internet of medical things. Sustainability 14, 12828 (2022)

    Google Scholar 

  15. Boutahir, M.K., Farhaoui, Y., Azrour, M., Zeroual, I., El Allaoui, A.: Effect of feature selection on the prediction of direct normal irradiance. Big Data Min. Anal. 5(4), 309–317 (2022). https://doi.org/10.26599/BDMA.2022.9020003

  16. Azrour, M., Farhaoui, Y., Ouanan, M., Guezzaz, A.: SPIT detection in telephony over IP Using K-means algorithm. Procedia Comput. Sci. 148, 542–551 (2019). https://doi.org/10.1016/j.procs.2019.01.027

    Article  Google Scholar 

  17. Mabrouki, J., Fattah, G., Kherraf, S., Abrouki, Y., Azrour, M., El Hajjaji, S.: Artificial intelligence system for intelligent monitoring and management of water treatment plants. In Emerging Real-World Applications of Internet of Things, CRC Press, pp. 69–87 (2022)

    Google Scholar 

  18. Dargaoui, S. et al.: An overview of the security challenges in IoT environment. In J. Mabrouki, A. Mourade, A. Irshad, S. A. Chaudhry (Eds.), Advanced Technology for Smart Environment and Energy, in Environmental Science and Engineering. Cham: Springer International Publishing, pp. 151–160 (2023). https://doi.org/10.1007/978-3-031-25662-2_13

  19. Azrour, M., Mabrouki, J., Fattah, G., Guezzaz, A., Aziz, F.: Machine learning algorithms for efficient water quality prediction. Model. Earth Syst. Environ. 8(2), 2793–2801 (2022)

    Article  Google Scholar 

  20. Huang, R., Ma, C., Ma, J., Huangfu, X., He, Q.: Machine learning in natural and engineered water systems. Water Res. 205, 117666 (2021). https://doi.org/10.1016/j.watres.2021.117666

    Article  CAS  Google Scholar 

  21. Şener, Ş, Şener, E., Davraz, A.: Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total. Environ. 584, 131–144 (2017)

    Article  Google Scholar 

  22. Kwon, H. G., Jo, C. D.: Water quality assessment of the Nam River, Korea, using multivariate statistical analysis and WQI. Int. J. Environ. Sci. Technol., 1–16 (2023)

    Google Scholar 

  23. Lap, B. Q. et al.: Predicting Water Quality Index (WQI) by feature selection and machine learning: A case study of An Kim Hai irrigation system. Ecol. Inform. 101991 (2023)

    Google Scholar 

  24. Pandey, S., Kumari, N., Al Nawajish, S.: Land use land cover (LULC) and surface water quality assessment in and around selected Dams of Jharkhand using water quality index (WQI) and geographic information system (GIS). J. Geol. Soc. India 99(2), 205–218 (2023)

    Google Scholar 

  25. Hamlat, A., Guidoum, A.: Assessment of groundwater quality in a semiarid region of Northwestern Algeria using water quality index (WQI). Appl Water Sci 8(8), 220 (2018)

    Article  Google Scholar 

  26. Khuan, L. Y., Hamzah, N., Jailani, R.: Prediction of water quality index (WQI) based on artificial neural network (ANN). In Student Conference on Research and Development, IEEE, pp. 157–161 (2002)

    Google Scholar 

  27. Boyacioglu, H.: Utilization of the water quality index method as a classification tool. Environ. Monit. Assess. 167, 115–124 (2010)

    Article  CAS  Google Scholar 

  28. Chandra, D.S., Asadi, S.S., Raju, M.V.S.: Estimation of water quality index by weighted arithmetic water quality index method: a model study. Int. J. Civ. Eng. Technol. 8(4), 1215–1222 (2017)

    Google Scholar 

  29. Alobaidy, A. H. M. J., Abid, H. S., Maulood, B. K.: Application of water quality index for assessment of Dokan Lake ecosystem, Kurdistan region, Iraq. J. Water Resour. Prot. 2(9) (2010). https://doi.org/10.4236/jwarp.2010.29093

  30. Guezzaz, A., Azrour, M., Benkirane, S., Mohyeddine, M., Attou, H., Douiba, M.: A lightweight hybrid intrusion detection framework using machine learning for edge-based IIoT security. Int. Arab J. Inf. Technol. 19(5) (2022)

    Google Scholar 

  31. Guezzaz, A., Asimi, A., Mourade, A., Tbatou, Z., Asimi, Y.: A multilayer perceptron classifier for monitoring network traffic. In Big Data and Networks Technologies 3, Springer, pp. 262–270 (2020)

    Google Scholar 

  32. Douiba, M., Benkirane, S., Guezzaz, A., Azrour, M.: An improved anomaly detection model for IoT security using decision tree and gradient boosting. J. Supercomput. 1–20 (2022)

    Google Scholar 

  33. Mohy-eddine, M., Guezzaz, A., Benkirane, S., Azrour, M.: An efficient network intrusion detection model for IoT security using K-NN classifier and feature selection. Multimed. Tools Appl. (2023). https://doi.org/10.1007/s11042-023-14795-2

    Article  Google Scholar 

  34. Ahajjam, T., Moutaib, M., Aissa, H., Azrour, M., Farhaoui, Y., Fattah, M.: Predicting students’ final performance using artificial neural networks. Big Data Min. Anal. 5(4), 294–301 (2022). https://doi.org/10.26599/BDMA.2021.9020030

    Article  Google Scholar 

  35. Hazman, C., Guezzaz, A., Benkirane, S., Azrour, M.: lIDS-SIoEL: intrusion detection framework for IoT-based smart environments security using ensemble learning. Clust. Comput. 1–15 (2022)

    Google Scholar 

  36. Fattah, G., Mabrouki, J., Ghrissi, F., Azrour, M., Abrouki, Y.: Multi-Sensor system and internet of things (IoT) technologies for air pollution monitoring. In Futuristic Research Trends and Applications of Internet of Things, CRC Press (2022)

    Google Scholar 

  37. Douiba, M., Benkirane, S., Guezzaz, A., Azrour, M.: Anomaly detection model based on gradient boosting and decision tree for IoT environments security. J. Reliab. Intell. Environ., pp. 1–12 (2022)

    Google Scholar 

  38. Babcock University et al.: Supervised machine learning algorithms: classification and comparison. Int. J. Comput. Trends Technol. 48(3), 128–138 (2017). https://doi.org/10.14445/22312803/IJCTT-V48P126

  39. Uddin, S., Khan, A., Hossain, M.E., Moni, M.A.: Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 19(1), 281 (2019). https://doi.org/10.1186/s12911-019-1004-8

    Article  Google Scholar 

  40. Janiesch, C., Zschech, P., Heinrich, K.: Machine learning and deep learning. Electron. Mark. 31(3), 685–695 (2021). https://doi.org/10.1007/s12525-021-00475-2

    Article  Google Scholar 

  41. Shrestha, A., Mahmood, A.: Review of deep learning algorithms and architectures. IEEE Access 7, 53040–53065 (2019). https://doi.org/10.1109/ACCESS.2019.2912200

    Article  Google Scholar 

  42. Leong, W.C., Bahadori, A., Zhang, J., Ahmad, Z.: Prediction of water quality index (WQI) using support vector machine (SVM) and least square-support vector machine (LS-SVM). Int. J. River Basin Manag. 19(2), 149–156 (2021)

    Article  Google Scholar 

  43. Ibrahim, H., et al.: Evaluation and prediction of groundwater quality for irrigation using an integrated water quality indices, machine learning models and GIS approaches: a representative case study. Water 15(4), 694 (2023)

    Article  CAS  Google Scholar 

  44. Khan, M.A., et al.: Application of random forest for modelling of surface water salinity. Ain Shams Eng. J. 13(4), 101635 (2022)

    Article  Google Scholar 

  45. Deng, T., Chau, K.-W., Duan, H.-F.: Machine learning based marine water quality prediction for coastal hydro-environment management. J. Environ. Manage. 284, 112051 (2021)

    Article  CAS  Google Scholar 

  46. Ranjithkumar, M., Robert, L.: Machine learning techniques and cloud computing to estimate river water quality—survey. In Inventive Communication and Computational Technologies: Proceedings of ICICCT 2020, Springer, pp. 387–396 (2021)

    Google Scholar 

  47. Aldhyani, T. H., Al-Yaari, M., Alkahtani, H., Maashi, M.: Water quality prediction using artificial intelligence algorithms. Appl. Bionics Biomech. 2020 (2020)

    Google Scholar 

  48. Mecheri, R., Dahmani, S.: Intelligent approaches for IoT: water quality prediction. université akli mohand oulhadj-bouira (2022)

    Google Scholar 

  49. Nafouanti, M.B., Li, J., Nyakilla, E.E., Mwakipunda, G.C., Mulashani, A.: A novel hybrid random forest linear model approach for forecasting groundwater fluoride contamination. Environ. Sci. Pollut. Res. 30(17), 50661–50674 (2023)

    Article  CAS  Google Scholar 

  50. Vu, M.T., Jardani, A., Massei, N., Fournier, M.: Reconstruction of missing groundwater level data by using Long Short-Term Memory (LSTM) deep neural network. J. Hydrol. 597, 125776 (2021)

    Article  Google Scholar 

  51. Nguyen, P.T., et al.: Soft computing ensemble models based on logistic regression for groundwater potential mapping. Appl. Sci. 10(7), 2469 (2020)

    Article  CAS  Google Scholar 

  52. Zaib, S., Najib, M. S., Mohd Daud, S., Zahari, M. F., Mohamad, M.: The study of groundwater source by using KNN classification. in Proceedings of the 6th International Conference on Electrical, Control and Computer Engineering: InECCE2021, Kuantan, Pahang, Malaysia, 23rd August, Springer, pp. 563–574 (2022)

    Google Scholar 

  53. Elzain, H.E., et al.: Novel machine learning algorithms to predict the groundwater vulnerability index to nitrate pollution at two levels of modeling. Chemosphere 314, 137671 (2023)

    Article  CAS  Google Scholar 

  54. Singh, D., Sharma, V.: Review of groundwater potential storage and recharge zone map delineation using statistics based hydrological and machine learning based artificial intelligent models, in 2023 Somaiya International Conference on Technology and Information Management (SICTIM), IEEE, pp. 6–11 (2023)

    Google Scholar 

  55. Bien, T. X., Jaafari, A., Van Phong, T., Trinh, P. T., Pham, B. T.: Groundwater potential mapping in the Central Highlands of Vietnam using spatially explicit machine learning. Earth Sci. Inform. pp. 1–16 (2023)

    Google Scholar 

  56. Chen, Y., et al.: Evaluation efficiency of hybrid deep learning algorithms with neural network decision tree and boosting methods for predicting groundwater potential. Geocarto Int. 37(19), 5564–5584 (2022)

    Article  Google Scholar 

  57. Sahoo, A., Barik, A., Samantaray, S., Ghose, D. K.: Prediction of sedimentation in a watershed using RNN and SVM. in Communication Software and Networks, S. C. Satapathy, V. Bhateja, M. Ramakrishna Murty, N. Gia Nhu, Jayasri Kotti (Eds.), in Lecture Notes in Networks and Systems. Singapore: Springer, pp. 701–708 (2021). https://doi.org/10.1007/978-981-15-5397-4_71

  58. Choi, H.-M., Kim, M.-K., Yang, H.: Abnormally high water temperature prediction using LSTM deep learning model. J. Intell. Fuzzy Syst. 40(4), 8013–8020 (2021)

    Article  Google Scholar 

  59. Gonçalves Neto, A., Palter, J. B., Bower, A., Furey, H., Xu, X.: Labrador sea water transport across the Charlie‐Gibbs fracture zone. J. Geophys. Res. Oceans 125(8), e2020JC016068 (2020)

    Google Scholar 

  60. Sun, K., Cui, W., Chen, C.: Review of underwater sensing technologies and applications. Sensors 21(23), 7849 (2021)

    Article  Google Scholar 

  61. Kaddoura, S.: Evaluation of machine learning algorithm on drinking water quality for better sustainability. Sustainability 14(18) (2022). https://doi.org/10.3390/su141811478

  62. Moni, S., Aziz, E., Majeed, A.P.A., Malek, M.: The prediction of blue water footprint at Semambu water treatment plant by means of artificial neural networks (ANN) and support vector machine (SVM) models. Phys. Chem. Earth Parts ABC 123, 103052 (2021)

    Article  Google Scholar 

  63. Viet, N. D., Jang, A.: Machine learning-based real-time prediction of micropollutant behaviour in forward osmosis membrane (waste) water treatment. J. Clean. Prod. 136023 (2023)

    Google Scholar 

  64. Qambar, A. S., Al Khalidy, M. M. M.: Development of local and global wastewater biochemical oxygen demand real-time prediction models using supervised machine learning algorithms. Eng. Appl. Artif. Intell. 118, 105709 (2023)

    Google Scholar 

  65. Wijaya, J., Oh, S.: Machine learning reveals the complex ecological interplay of microbiome in a full-scale membrane bioreactor wastewater treatment plant. Environ. Res. 222, 115366 (2023)

    Article  CAS  Google Scholar 

  66. Bernardelli, A., et al.: Real-time model predictive control of a wastewater treatment plant based on machine learning. Water Sci. Technol. 81(11), 2391–2400 (2020)

    Article  CAS  Google Scholar 

  67. Zaghloul, M.S., Achari, G.: Application of machine learning techniques to model a full-scale wastewater treatment plant with biological nutrient removal. J. Environ. Chem. Eng. 10(3), 107430 (2022). https://doi.org/10.1016/j.jece.2022.107430

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourade Azrour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azrour, M. et al. (2024). A Survey of Machine and Deep Learning Applications in the Assessment of Water Quality. In: Mabrouki, J., Mourade, A. (eds) Technical and Technological Solutions Towards a Sustainable Society and Circular Economy. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-031-56292-1_38

Download citation

Publish with us

Policies and ethics