Skip to main content

Agronomy Suitability of Treated Wastewater with Microalgae as Alternative Sources for Irrigation

  • Chapter
  • First Online:
Technical and Technological Solutions Towards a Sustainable Society and Circular Economy

Abstract

The principal source of domestic water, agricultural, and industrial uses is freshwater, which serves as the basis for a wide range of human needs and activities. Realizing sustainability, as outlined in the goals of sustainable development, demands an integration of the circular economy principles. This is especially crucial in the context of water, a resource with numerous recyclable applications. Water resources have become exhaustible as well as variable in space and also in time, which requires management to ensure an acceptable standard of living for the population. While production is also part of the ongoing importance of wastewater must be considered for recovery and reuse. Agriculture is considered the sector that consumes the most water, which encourages wastewater reuse in agriculture. Irrigation with treated wastewater has positive effects on the soil’s richness in fertilizing elements. In addition, resources such as phosphorus, for sustainable and restorative agriculture, potassium, and carbon are often critical limiting factors, that can be addressed through the use of recycled materials derived from microalgae. This encourages farmers to move towards irrigation either through groundwater or through the informal reuse of treated wastewater. This work aims to evaluate environmentally friendly wastewater treatment technologies such as those that use microalgae for modern and sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pajura, R., Masłoń, A., Czarnota, J.: The use of waste to produce liquid fertilizers in terms of sustainable development and energy consumption in the fertilizer industry—a case study from Poland. Energies 16(4) (2023). https://doi.org/10.3390/en16041747

  2. Frišták, V., Pipíška, M., Koperová, D., Jagerhofer, R., Soja, G., Bell, S.M.: Utilization of sewage sludge-derived pyrogenic material as a promising soil amendment. Agriculture 12(3) (2022). https://doi.org/10.3390/agriculture12030360

  3. Luo, H., Duan, M., He, L., Yang, S., Zou, Y., Tang, X.: A new organic-inorganic compound fertilizer for improving growth, yield, and 2-Acetyl-1-pyrroline biosynthesis of fragrant rice. Agriculture 11(11) (2021). https://doi.org/10.3390/agriculture11111121

  4. The United Nations world water development report, 2017: Wastewater: the untapped resource - UNESCO Bibliothèque Numérique. Consulté le: 12 août 2023. [En ligne]. Disponible sur: https://unesdoc.unesco.org/ark:/48223/pf0000247153

  5. Bora, R.R., Richardson, R.E., You, F.: Resource recovery and waste-to-energy from wastewater sludge via thermochemical conversion technologies in support of circular economy: a comprehensive review. BMC Chem. Eng. 2(1), 8 (2020). https://doi.org/10.1186/s42480-020-00031-3

  6. Ortiz, A., García, J., Uggetti, E., Díez-Montero, R.: Optimization of multi-stage thickening of biomass in a demonstrative full–scale microalgae-based wastewater treatment system. Sep. Purif. Technol. 281, 119830 (2022). https://doi.org/10.1016/j.seppur.2021.119830

  7. Alcalá, F.J., et al.: A hydrological–economic model for sustainable groundwater use in sparse-data drylands: application to the Amtoudi Oasis in southern Morocco, northern Sahara. Sci. Total Environ. 537, 309–322 (2015). https://doi.org/10.1016/j.scitotenv.2015.07.062

  8. Leduc, C., Pulido-Bosch, A., Remini, B.: Anthropization of groundwater resources in the Mediterranean region: processes and challenges. Hydrogeol. J. 25(6), 1529–1547 (2017). https://doi.org/10.1007/s10040-017-1572-6

  9. Voulvoulis, N.: Water reuse from a circular economy perspective and potential risks from an unregulated approach. Curr. Opin. Environ. Sci. Health 2, 32–45 (2018). https://doi.org/10.1016/j.coesh.2018.01.005

  10. Yang, J., Monnot, M., Ercolei, L., Moulin, P.: Membrane-based processes used in municipal wastewater treatment for water reuse: state-of-the-art and performance analysis. Membranes 10(6) (2020). https://doi.org/10.3390/membranes10060131

  11. Licciardello, F., Milani, M., Consoli, S., Pappalardo, N., Barbagallo, S., Cirelli, G.: Wastewater tertiary treatment options to match reuse standards in agriculture. Agric. Water Manag. 210, 232–242 (2018). https://doi.org/10.1016/j.agwat.2018.08.001

  12. Heidecke, C., Heckelei, T.: Impacts of changing water inflow distributions on irrigation and farm income along the Drâa River in Morocco. Agric. Econ. 41(2), 135–149 (2010). https://doi.org/10.1111/j.1574-0862.2009.00431.x

  13. Zoppi, G., Pipitone, G., Pirone, R., Bensaid, S.: Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catal. Today 387, 224–236 (2022). https://doi.org/10.1016/j.cattod.2021.06.002

  14. García-Corral, I., Morillas-España, A., Ciardi, M., Massa, D., Jiménez-Becker, S.: Reuse of wastewater from the production of microalgae and its effect on the growth of Pelargonium x hortorum. J. Appl. Phycol. 35(1), 173–181 (2023). https://doi.org/10.1007/s10811-022-02867-z

  15. Paul, R., Kenway, S., Mukheibir, P.: How scale and technology influence the energy intensity of water recycling systems-an analytical review. J. Clean. Prod. 215, 1457–1480 (2019). https://doi.org/10.1016/j.jclepro.2018.12.148

  16. Wu, B.: Membrane-based technology in greywater reclamation: a review. Sci. Total Environ. 656, 184–200 (2019). https://doi.org/10.1016/j.scitotenv.2018.11.347

  17. Cherchi, C., Kesaano, M., Badruzzaman, M., Schwab, K., Jacangelo, J.G.: Municipal reclaimed water for multi-purpose applications in the power sector: A review. J. Environ. Manage. 236, 561–570 (2019)

    Google Scholar 

  18. Fito, J., Van Hulle, S.W.H.: Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability. Environ. Dev. Sustain. 23(3), 2949–2972 (2021). https://doi.org/10.1007/s10668-020-00732-y

  19. La Bella, E., Baglieri, A., Rovetto, E.I., Stevanato, P., Puglisi, I.: Foliar spray application of chlorella vulgaris extract: effect on the growth of lettuce seedlings. Agronomy 11(2) (2021). https://doi.org/10.3390/agronomy11020308

  20. Puglisi, I., La Bella, E., Rovetto, E.I., Stevanato, P., Fascella, G., Baglieri, A.: Morpho-biometric and biochemical responses in lettuce seedlings treated by different application methods of Chlorella vulgaris extract: foliar spray or root drench? J. Appl. Phycol. 34(2), 889–901 (2022). https://doi.org/10.1007/s10811-021-02671-1

  21. La Bella, E., Baglieri, A., Fragalà, F., Puglisi, I.: Multipurpose Agricultural reuse of microalgae biomasses employed for the treatment of urban wastewater. Agronomy 12(2) (2022). https://doi.org/10.3390/agronomy12020234

  22. El-Moustaqim, K.: et al. Combination of microalgae method, decantation, and filtration for domestic wastewater treatment. Sustainability 15(22) (2023) https://doi.org/10.3390/su152216110

  23. El-Moustaqim, K., Mabrouki, J., Azrour, M.: Monitoring of Water Toxicity Through the Internet of Things to Protect the Health of the Population, pp. 85–92. (2023). https://doi.org/10.1201/9781003430735-7

  24. Li, K., et al.: Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresour. Technol. 291, 121934 (2019). https://doi.org/10.1016/j.biortech.2019.121934

  25. You, X., Yang, L., Zhou, X., Zhang, Y.: Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: a review. Environ. Res. 209, 112860 (2022). https://doi.org/10.1016/j.envres.2022.112860

  26. Kishor, R., et al.: Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 9(2), 105012 (2021). https://doi.org/10.1016/j.jece.2020.105012

  27. Liu, X., et al.: Exploring wastewater nitrogen and phosphorus flows in urban and rural areas in China for the period 1970 to 2015. Sci. Total Environ. 907, 168091 (2024). https://doi.org/10.1016/j.scitotenv.2023.168091

  28. Qu, Y., et al.: Phytosphere purification of urban domestic wastewater. Environ. Pollut. 336, 122417 (2023). https://doi.org/10.1016/j.envpol.2023.122417

  29. Salama, Y., Chennaoui, M., Sylla, A., Mountadar, M., Rihani, M., Assobhei, O.: Review of wastewater treatment and reuse in the morocco: aspects and perspectives (2014)

    Google Scholar 

  30. Gourfi, A., Daoudi, L.: Effects of land use changes on soil erosion and sedimentation of dams in semi-arid regions: example of N’fis watershed in western high atlas, Morocco. J. Earth Sci. Clim. Change 10(513), 2 (2019)

    Google Scholar 

  31. Verner, D., et al.: Climate variability, drought, and drought management in Morocco’s agricultural sector. World Bank (2018)

    Google Scholar 

  32. Gourfi, A., Daoudi, L., de Vente, J.: A new simple approach to assess sediment yield at a large scale with high landscape diversity: an example of Morocco. J. Afr. Earth Sci. 168, 103871 (2020). https://doi.org/10.1016/j.jafrearsci.2020.103871

  33. Petrovic, S., Reed, A.: Morocco. In: Petrovic, S. (ed.) World Energy Handbook, pp. 79–89. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-31625-8_9

  34. El Baroudi, H., et al.: Assessing the corrosion and scaling potential of drinking water in morocco using water stability indices. Ecol. Eng. Environ. Technol. 25, 130–139 (2023). https://doi.org/10.12912/27197050/175970

  35. Abousserhane, Z., Abbou, A., Bouzakri, H.: Experimental Performance Study of an Isolated PV Water Pumping System Used for Agricultural Irrigation in Zagora-Morocco Semi-arid Area, pp. 660–671. (2023). https://doi.org/10.1007/978-3-031-29860-8_67

  36. Hirich, A., Choukr-Allah, R.: Wastewater reuse in the Mediterranean region: Case of Morocco. présenté à 13th edition of the World Wide Workshop for Young Environmental Scientists (WWW-YES-2013) - Urban waters: resource or risks?, HAL-ENPC, (2013). Consulté le: 12 août 2023. [En ligne]. Disponible sur: https://enpc.hal.science/hal-00843370

  37. Jihad, M.-D.E.: Climate change and rural development in the middle atlas mountains and fringe areas (Morocco). J. Alp. Res. Rev. Géographie Alp. (104‑4), (2016). https://doi.org/10.4000/rga.3465

  38. Chari, Z., Cherkaoui, E., Khamar, M., Nounah, A.: Evolution of Desalination in Morocco, pp. 464–471. (2023). https://doi.org/10.1007/978-3-031-49345-4_44

  39. Morocco Average Precipitation - 2023 Data - 2024 Forecast - 1901–2022 Historical. Consulté le: 12 août 2023. [En ligne]. Disponible sur. https://tradingeconomics.com/morocco/precipitation

  40. Pozo, J., Alcalá, F., Poyatos, J., Martín-Pascual, J.: Wastewater reuse for irrigation agriculture in Morocco: influence of regulation on feasible implementation. Land 11, 2312 (2022). https://doi.org/10.3390/land11122312

  41. Cramer, W., et al.: Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8(11), (2018). https://doi.org/10.1038/s41558-018-0299-2

  42. Nourredine, H., Barjenbruch, M., Million, A., El Amrani, B., Chakri, N., Amraoui, F.: Linking urban water management, wastewater recycling, and environmental education: a case study on engaging youth in sustainable water resource management in a public school in Casablanca City, Morocco. Educ. Sci. 13(8) (2023). https://doi.org/10.3390/educsci13080824.

  43. Attar, O., Brouziyne, Y., Bouchaou, L., Chehbouni, A.: A critical review of studies on water resources in the Souss-Massa Basin, Morocco: envisioning a water research agenda for local sustainable development. Water 14(9), 1355 (2022)

    Google Scholar 

  44. Sameena, P.P., Janeeshma, E., Sarath, N.G., Puthur, J.T.: Phytoremediation and phycoremediation: a sustainable solution for wastewater treatment. In: Madhav, S., Singh, P., Mishra, V., Ahmed, S., Mishra, P.K. (eds.) Recent Trends in Wastewater Treatment, pp. 171–191. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-99858-5_8

  45. Ahmad, A., Hassan, S.W., Banat, F.: An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy. Bioengineered 13(4), 9521–9547 (2022). https://doi.org/10.1080/21655979.2022.2061148

  46. Lin, B., Nowrin, F.H., Rosenthal, J.J., Bhown, A.S., Malmali, M.: Perspective on Intensification of Haber−Bosch to Enable Ammonia Production under Milder Conditions. ACS Sustain. Chem. Eng. 11(27), 9880–9899 (2023). https://doi.org/10.1021/acssuschemeng.2c06711

  47. Hasan, R.: Bioremediation of Swine Wastewater and Biofuel Potential by using Chlorella vulgaris, Chlamydomonas reinhardtii, and Chlamydomonas debaryana. J. Pet. Environ. Biotechnol. 5(3) (2014). https://doi.org/10.4172/2157-7463.1000175

  48. Ma, M., et al.: Alga-based dairy wastewater treatment scheme: Candidates screening, process advancement, and economic analysis. J. Clean. Prod. 390, 136105 (2023). https://doi.org/10.1016/j.jclepro.2023.136105

  49. Roshan, A., Kumar, M.: Water end-use estimation can support the urban water crisis management: a critical review. J. Environ. Manage. 268, 110663 (2020). https://doi.org/10.1016/j.jenvman.2020.110663

  50. Verma, K., Kumar, P.K., Krishna, S.V., Himabindu, V.: hycoremediation of sewage-contaminated lake water using microalgae–bacteria co-culture. Water. Air. Soil Pollut. 231(6), 299 (2020). https://doi.org/10.1007/s11270-020-04652-5

  51. Chen, C.-Y., et al.: Optimizing heterotrophic production of Chlorella sorokiniana SU-9 proteins potentially used as a sustainable protein substitute in aquafeed. Bioresour. Technol. 370, 128538 (2023). https://doi.org/10.1016/j.biortech.2022.128538

  52. Gonçalves, A.L., Pires, J.C.M., Simões, M.: A review on the use of microalgal consortia for wastewater treatment. Algal Res. 24, 403–415 (2017). https://doi.org/10.1016/j.algal.2016.11.008

  53. Kshirsagar, A.D.: Bioremediation of wastewater by using microalgae: an experimental study. Pharm Res (2013)

    Google Scholar 

  54. Foladori, P., Petrini, S., Andreottola, G.: Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chem. Eng. J. 345, 507–516 (2018). https://doi.org/10.1016/j.cej.2018.03.178

  55. Ofori, S., Puškáčová, A., Růžičková, I., Wanner, J.: Treated wastewater reuse for irrigation: Pros and cons. Sci. Total Environ. 760, 144026 (2021). https://doi.org/10.1016/j.scitotenv.2020.144026

  56. Rizzo, L., et al.: Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 655, 986–1008 (2019). https://doi.org/10.1016/j.scitotenv.2018.11.265

  57. Chai, W.S., Tan, W.G., Halimatul Munawaroh, H.S., Gupta, V.K., Ho, S.-H., Show, P.L.: Multifaceted roles of microalgae in the application of wastewater biotreatment: a review. Environ. Pollut. 269, 116236 (2021). https://doi.org/10.1016/j.envpol.2020.116236

  58. Mani, D., Kumar, C.: Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 11(3), 843–872 (2014). https://doi.org/10.1007/s13762-013-0299-8

  59. Rahman, A., Jahanara, I., Jolly, Y.N.: Assessment of physicochemical properties of water and their seasonal variation in an urban river in Bangladesh. Water Sci. Eng. 14(2), 139–148 (2021). https://doi.org/10.1016/j.wse.2021.06.006

  60. Lassoui, A., Soltani, S.: Contribution a la biorememdiation des eaux usees par des microalgues. (2021)

    Google Scholar 

  61. Liu, X., Hong, Y.: Microalgae-based wastewater treatment and recovery with biomass and value-added products: a brief review. Curr. Pollut. Rep. 7(2), 227–245 (2021). https://doi.org/10.1007/s40726-021-00184-6

  62. Nguyen, M.T., et al.: Removal of nutrients and COD in wastewater from vietnamese piggery farm by the culture of chlorella vulgaris in a pilot-scaled membrane photobioreactor. Water 14(22) (2022). https://doi.org/10.3390/w14223645

  63. Abdulredha, D.S., AlMousawi, N.J., Azeez, N.M.: Using Blue-Green Algae Hapalosiphon Sp. and Green Algae Scenedesmus Spp. In: Reducing Organic Pollutants from Wastewater. Ann. Romanian Soc. Cell Biol. 25(6), 8647–8653 (2021)

    Google Scholar 

  64. Plöhn, M., et al.: Wastewater treatment by microalgae. Physiol. Plant. 173(2), 568–578 (2021). https://doi.org/10.1111/ppl.13427

    Article  CAS  Google Scholar 

  65. Pratap, B., Kumar, S., Purchase, D., Bharagava, R.N., Dutta, V.: Practice of wastewater irrigation and its impacts on human health and environment: a state of the art. Int. J. Environ. Sci. Technol. 20(2), 2181–2196 (2023). https://doi.org/10.1007/s13762-021-03682-8

  66. AQUASTAT - FAO’s Global Information System on Water and Agriculture. Consulté le: 3 janvier 2024. [En ligne]. Disponible sur: https://www.fao.org/aquastat/en/

  67. Ortega-Pozo, J.L., Alcalá, F.J., Poyatos, J.M., Martín-Pascual, J.: Wastewater reuse for irrigation agriculture in Morocco: influence of regulation on feasible implementation. Land 11(12), 2312 (2022). https://doi.org/10.3390/land11122312

  68. Hdidou, M., et al.: Potential Use of Constructed Wetland Systems for Rural Sanitation and Wastewater Reuse in Agriculture in the Moroccan Context. (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadija El-Moustaqim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Moustaqim, K., Mabrouki, J., Hmouni, D. (2024). Agronomy Suitability of Treated Wastewater with Microalgae as Alternative Sources for Irrigation. In: Mabrouki, J., Mourade, A. (eds) Technical and Technological Solutions Towards a Sustainable Society and Circular Economy. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-031-56292-1_30

Download citation

Publish with us

Policies and ethics