Skip to main content

Introduction and State of the Art

  • Chapter
  • First Online:
Tesla Turbine

Abstract

This chapter resumes the main special features of Tesla turbines, encompassing the state-of-the-art both at modelling and experimental levels, and discussing the fundamentals of its principle of operation. Differently from all other types of dynamic machines, Tesla turbines exchange work thanks to frictional forces instead of pressure forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dixon, S. L. (2005). Fluid mechanics and thermodynamics of turbomachinery (5th ed.). Elsevier.

    Google Scholar 

  2. Dean, R. C. (1959). On the necessity of unsteady flow in fluid machines. Journal of Basic Engineering ASME Transactions, 81, 24–28.

    Article  Google Scholar 

  3. Greitzer, E. M. (1986). An introduction to unsteady flow in turbomachines. In Advanced topics in turbomachinery. Principal Lecture Series No. 2. (D. Japikse (Ed.)) (pp. 2.1–2.29). Concepts ETI.

    Google Scholar 

  4. Traverso, A., Barberis, S., Larosa, L., and Silvestri, P., 2018, “Reverse Cycle Machine Provided with a Turbine”, World Patent, WO2018/127445A1.

    Google Scholar 

  5. Balje, O. E. (1981). Turbomachines, a guide to design, selection and theory. Wiley.

    Book  Google Scholar 

  6. Renuke, A., Vannoni, A., Traverso, A., & Pascenti, M. (2019). Experimental and numerical investigation of small-scale tesla turbines. ASME Journal of Engineering Gas Turbines Power, 141(12), 121011.

    Article  Google Scholar 

  7. Renuke, A., Reggio, F., Pascenti, M., Silvestri, P., & Traverso, A. (2020). Experimental investigation on a 3 kW tesla expander with high speed generator. ASME Paper GT2020-14572.

    Google Scholar 

  8. Renuke, A., Reggio, F., Traverso, A., Pascenti, M. (2022). Experimental characterization of losses in bladeless turbine prototype. Journal of Engineering for Gas Turbines and Power, 144, 041009_1–8.

    Google Scholar 

  9. Renuke, A., Traverso, A., Reggio, F., Pascenti, M., & Silvestri, P. (2023). Performance investigation of stator-less and blade-less radial expander. ASME Paper GT2023–101192.

    Google Scholar 

  10. Tesla, N. (1913). Turbine. US Patent 1061206.

    Google Scholar 

  11. Tesla, N. (1913). Fluid Propulsion. US Patent 1061142.

    Google Scholar 

  12. Armstrong, J. H. (1952). An investigation of the performance of a modified tesla turbine. Ph.D. Thesis, Faculty of the Division of Graduate Studies, Georgia Institute of Technology.

    Google Scholar 

  13. Beans, E. W. (1961). Performance characteristics of a friction disk turbine. Ph.D Thesis, The Pennsylvania State University.

    Google Scholar 

  14. Rice, W. (1965). An analytical and experimental investigation of multiple disk turbines. Journal of Engineering for Power, 87(1), 29–36.

    Article  Google Scholar 

  15. Hoya, G. P., & Guha, A. (2008). The design of a test rig and study of the performance and efficiency of a tesla disc turbine. Journal of Power and Energy, 223, Part A, 451–465.

    Google Scholar 

  16. Guha, A., & Smiley, B. (2009). Experiment and analysis for an improved design of the inlet and nozzle in tesla disc turbines. Journal of Power and Energy, 224, Part A, 261–277.

    Google Scholar 

  17. Krishnan V. (2015). Design and fabrication of cm–scale tesla turbines. Ph.D. Thesis, Berkeley University.

    Google Scholar 

  18. Peshlakai, A. (2012). Challenging the versatility of tesla turbine-working fluid variations and turbine performance. Master Thesis, Arizona State University.

    Google Scholar 

  19. Holland, K. (2015). Design, construction and testing of a tesla turbine. Master Thesis, Laurentian University Sudbury.

    Google Scholar 

  20. Li, R., Huanran, W., Erren, Y., Meng, L., & Weigang, N. (2017). Experimental study on bladeless turbine using incompressible working medium. Advances in Mechanical Engineering, 9(1), 1–12.

    Article  Google Scholar 

  21. Manfrida, G., Pacini, L., & Talluri, L. (2017). A revised tesla turbine concept for ORC applications. Energy, 129, 1055–1062.

    Google Scholar 

  22. Rusin, K., Wroblewski, W., & Strozik, M. (2018). Experimental and numerical investigation of tesla turbine. Journal of Physics: Conf. series, 1101, 012029.

    Google Scholar 

  23. Manfrida, G., Pacini, L., & Talluri, L. (2018). An upgraded tesla turbine concept for ORC applications. Energy, 158, 33–40.

    Article  Google Scholar 

  24. Bloudíček, P., & Paloušek, D. (2007). Design of tesla turbine. Brno, Česká republika.

    Google Scholar 

  25. Vedavalli, K., Zoghora, I., & Michel, M. (2011). A micro tesla turbine for power generation from low pressure heads and evaporation driven flows. IEEE, Transducers’11, 1851–1854.

    Google Scholar 

  26. Schosser, C. (2016). Experimental and numerical investigations and optimisation of tesla radial turbines. Master Thesis, Universität der Bundeswehr München Fakultät für Luft und Raumfahrttechnik Institut für Thermodynamik.

    Google Scholar 

  27. Okamoto, K., & Goto, K. (2017). Experimental investigation of inflow condition effects on tesla turbine performance. ISABE, International Symposium on Air Breathing Engine, 1–11.

    Google Scholar 

  28. Ladino, A. F. R. (2004). Numerical simulation of the flow field in a friction-type turbine (tesla turbine). Thesis, Vienna University of Technology.

    Google Scholar 

  29. Ladino, A. F .R. (2004). Numerical simulation of the flow field in a friction–type turbine (tesla turbine). Technical report, Vienna University of Technology.

    Google Scholar 

  30. Lemma, E., Deam, R. T., Toncich, D., & Collins, R. (2008). Characterisation of a small viscous flow turbine. Experimental Thermal and Fluid Science, 33, 96–105.

    Article  Google Scholar 

  31. Lampart, P., Kosowski, K., Piwowarski, M., & Jedrzejewski, L. (2009). Design analysis of tesla micro–turbine operating on a low–boiling medium. Polish Maritime Research, 28–33.

    Google Scholar 

  32. Rusin, K., Wróblewski, W., & Strozik, M. (2018). Experimental and numerical investigations of tesla turbine. Journal of Physics Conf. Series, 1101, 012029.

    Article  Google Scholar 

  33. Qi, W., Deng, W., Chi, Z., Hu, L., Yuan, Q., & Feng, Z. (2019). Influence of disc tip geometry on the aerodynamic performance and flow characteristics of multichannel tesla turbines. Energies, 12, 572.

    Article  Google Scholar 

  34. Wang, B., Okamoto, K., Yamaguchi, K., & Teramoto, S. (2014). Loss mechanisms in shear-force pump with multiple corotating disks. Journal of Fluids Engineering, 136, 081101–081111.

    Article  Google Scholar 

  35. Sengupta, S., & Guha, A. (2008). Inflow-rotor interaction in Tesla disc turbines: Effects of discrete inflows, finite disc thickness, and radial clearance on the fluid dynamics and performance of the turbine. Proc IMechE Part A: Journal of Power and Energy, 1–21

    Google Scholar 

  36. Steidel, R., & Weiss, H. (1976). Performance test of a bladeless turbine for geothermal applications. Technical Report, UCID–17068, California Univ., Livermore (USA), Lawrence Livermore Lab.

    Google Scholar 

  37. Patel, N., & Schmidt, D. D. (2002). Biomass boundary layer turbine power system. In Proceedings of International Joint Power Generation Conference.

    Google Scholar 

  38. Deam, R. T., Lemma, E., Mace, B., & Collins, R. (2008). On scaling down turbines to millimeter size. Transaction of ASME Journal of Engineering for Gas Turbines and Power, 130, 1–9.

    Google Scholar 

  39. Valente, A. (2008). Installation for pressure reduction of hydrocarbon gases in a near isothermal manner. In Proceedings of Abu Dhabi International Petroleum Exhibition and Conference.

    Google Scholar 

  40. Crowell, R. (2009). Generation of electricity utilizing solar hot water collectors and a tesla turbine. In Proceedings of the ASME 3rd International Conference of Energy Sustainability.

    Google Scholar 

  41. Cirincione, N. (2011). Design, construction and commissioning of an organic rankine cycle waste heat recovery system with a tesla hybrid turbine expander. Thesis, Colorado State University.

    Google Scholar 

  42. Ho-Yan, B. P. (2011). Tesla turbine for pico hydro applications. Guelph Engineering Journal, 4, 1–8

    Google Scholar 

  43. Zhao, D., & Khoo, J. (2013). Rainwater and air driven 40 mm bladeless electromagnetic energy harvester. Applied Physics Letters, 103, 1–4.

    Google Scholar 

  44. Ruiz, M. (2015). Characterization of single phase and two–phase heat and momentum transport in a spiralling radial inflow micro channel heat sink. Ph.D. thesis, Berkeley University.

    Google Scholar 

  45. Thawichsri, K., & Nilnont, W. (2015). A comparing on the use of centrifugal turbine and tesla turbine in an application of organic rankine cycle. International Journal of Advanced Culture Technology, 3, 58–66.

    Article  Google Scholar 

  46. Bankar, N., Chavan, A., Dhole, S., & Patunkar, P. (2016). Development of hybrid tesla turbine and current trends in application of tesla turbine. International Journal for Technological Research in Engineering, 3, 1504–1507.

    Google Scholar 

  47. Umashankar, M., Anirudh, V., & Pishey, K. (2017). Investigation of tesla turbine. International Journal of Latest Technology in Engineering, Management and Applied Science, 6, 23–27.

    Google Scholar 

  48. Renuke, A., & Traverso, A. (2022). Performance assessment of tesla expander using 3-D numerical simulation. Journal of Engineering for Gas Turbines and Power, 144, 111006_1–14.

    Google Scholar 

  49. Renuke, A., Traverso, A., Pascenti, M., Silvestri, P., & Reggio, F. (2023). Ultra-efficient bladeless turbomachinery. World patent no. WO2023170497A1.

    Google Scholar 

  50. Traverso, A., Silvestri, P., Reggio, F., & Efstathiadis, T. (2019). Theoretical and experimental investigation on rotor dynamic behaviour of bladeless turbine for innovative cycles. ASME Paper GT2019–91708.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Traverso .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Traverso, A., Renuke, A., Kalfas, A.I. (2024). Introduction and State of the Art. In: Tesla Turbine. Springer, Cham. https://doi.org/10.1007/978-3-031-56258-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56258-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56257-0

  • Online ISBN: 978-3-031-56258-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics