Skip to main content

Climate Change Impact on Plant Pathogen Emergence: Artificial Intelligence (AI) Approach

  • Chapter
  • First Online:
Plant Quarantine Challenges under Climate Change Anxiety

Abstract

Food is among the basic necessities of human life, and over the last decade global food supplies are facing severe challenge in form of growing population, increasing disease infestation, resource constraint, and climate change. At the same time global food demands are expected to increase by around 35–56% by the middle of the century. All this forecasts a dark image for global food security in coming decades. Plant pathogens are responsible for significant losses in major crops including wheat, rice, maize, soybean, and potato (up to 41% losses). In addition to this, the challenge of climate change is making things even worse as fluctuation in climatic patterns result in breeding and invasion of unorthodox pathogens and insects (collectively termed as pests) which can lead to major reduction in crop yields. Early detection and forecasting of these evolving pathogens is essential for disease management and to avoid severe infestations. Recent advances in artificial intelligence (AI) technology have the potential to deal with many of these challenges; massive weather forecasting and imagery dataset can be collected worldwide and analyzed using deep-AI models. This will ultimately provide real-time information regarding changing spatial-temporal dynamics of pests and alert policymakers, producers, and businesses to develop integrated strategy for mitigation of evolving pest infestation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerly, D. D., Loarie, S. R., Cornwell, W. K., Weiss, S. B., Hamilton, H., Branciforte, R., & Kraft, N. J. B. (2010). The geography of climate change: Implications for conservation biogeography. Diversity and Distributions, 16(3), 476–487.

    Article  Google Scholar 

  • Allan, R. P., Barlow, M., Byrne, M. P., Cherchi, A., Douville, H., Fowler, H. J., et al. (2020). Advances in understanding large-scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, 1472(1), 49–75.

    Article  PubMed  Google Scholar 

  • Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., et al. (2015). The coffee rust crises in Colombia and Central America (2008–2013): Impacts, plausible causes and proposed solutions. Food Security, 7, 303–321.

    Article  Google Scholar 

  • Bai, Y., Scott, T. A., & Min, Q. (2014). Climate change implications of soil temperature in the Mojave Desert, USA. Frontiers of Earth Science, 8, 302–308.

    Article  Google Scholar 

  • Bakry, M. M. S., Abdrabbo, M. A. A., & Mohamed, G. H. (2015). Implementing of RCPs scenarios to estimate the population density of parlatoria date scale insect, Parlatoria blanchardii (Targioni-Tozzetti) (Hemiptera: Diaspididae) infesting date palm trees in Luxor Governorate, Egypt. Journal of Phytopathology and Pest Management, 34–53.

    Google Scholar 

  • Bauer, P., Stevens, B., & Hazeleger, W. (2021). A digital twin of Earth for the green transition. Nature Climate Change, 11(2), 80–83.

    Article  Google Scholar 

  • Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365–377.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benami, E., Jin, Z., Carter, M. R., Ghosh, A., Hijmans, R. J., Hobbs, A., Kenduiywo, B., & Lobell, D. B. (2021). Uniting remote sensing, crop modelling and economics for agricultural risk management. Nature Reviews Earth & Environment, 2(2), 140–159.

    Article  Google Scholar 

  • Bentz, B. J., Jönsson, A. M., Schroeder, M., Weed, A., Wilcke, R. A. I., & Larsson, K. (2019). Ips typographus and Dendroctonus ponderosae models project thermal suitability for intra-and inter-continental establishment in a changing climate. Frontiers in Forests and Global Change, 2, 1.

    Article  Google Scholar 

  • Bhattachan, A., Jurjonas, M. D., Moody, A. C., Morris, P. R., Sanchez, G. M., Smart, L. S., et al. (2018). Sea level rise impacts on rural coastal social-ecological systems and the implications for decision making. Environmental Science & Policy, 90, 122–134.

    Article  Google Scholar 

  • Biber-Freudenberger, L., Ziemacki, J., Tonnang, H. E., & Borgemeister, C. (2016). Future risks of pest species under changing climatic conditions. PLoS One, 11(4), e0153237.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bini, S. A. (2018). Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care? The Journal of Arthroplasty, 33(8), 2358–2361.

    Article  PubMed  Google Scholar 

  • Bornman, J. F., Barnes, P. W., Robson, T. M., Robinson, S. A., Jansen, M. A., Ballaré, C. L., & Flint, S. D. (2019). Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochemical & Photobiological Sciences, 18(3), 681–716.

    Article  CAS  Google Scholar 

  • Bosso, L., Russo, D., Di Febbraro, M., Cristinzio, G., & Zoina, A. (2016). Potential distribution of Xylella fastidiosa in Italy: A maximum entropy model. Phytopathologia Mediterranea, 62–72.

    Google Scholar 

  • Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70, 667–697.

    Article  CAS  PubMed  Google Scholar 

  • Clohessy, J. W., Sanjel, S., O’Brien, G. K., Barocco, R., Kumar, S., Adkins, S., Tillman, B., Wright, D. L., & Small, I. M. (2021). Development of a high-throughput plant disease symptom severity assessment tool using machine learning image analysis and integrated geolocation. Computers and Electronics in Agriculture, 184, 106089.

    Article  Google Scholar 

  • Cobb, J. N., Juma, R. U., Biswas, P. S., Arbelaez, J. D., Rutkoski, J., Atlin, G., et al. (2019). Enhancing the rate of genetic gain in public-sector plant breeding programs: Lessons from the breeder’s equation. Theoretical and Applied Genetics, 132, 627–645.

    Article  PubMed  Google Scholar 

  • Collard, B. C., & Mackill, D. J. (2008). Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 557–572.

    Article  CAS  Google Scholar 

  • D’Odorico, P., Davis, K. F., Rosa, L., Carr, J. A., Chiarelli, D., Dell’Angelo, J., et al. (2018). The global food-energy-water nexus. Reviews of Geophysics, 56(3), 456–531.

    Article  Google Scholar 

  • Drenth, A., & Kema, G. (2021). The vulnerability of bananas to globally emerging disease threats. Phytopathology, 111(12), 2146–2161.

    Article  PubMed  Google Scholar 

  • du Plessis, A., & du Plessis, A. (2019). Climate change: Current drivers, observations and impacts on the Globe’s natural and human systems. Water as an inescapable risk: Current global water availability, quality and risks with a specific focus on South Africa, 27–53. Springer

    Google Scholar 

  • Eastburn, D. M., McElrone, A. J., & Bilgin, D. D. (2011). Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathology, 60(1), 54–69.

    Article  Google Scholar 

  • Efron, B. (2020). Prediction, estimation, and attribution. International Statistical Review, 88, S28–S59.

    Article  Google Scholar 

  • El-Mergawy, R. A. A. M., & Al-Ajlan, A. M. (2011). Red palm weevil, Rhynchophorus ferrugineus (Olivier): Economic importance, biology, biogeography and integrated pest management. Journal of Agricultural Science and Technology A, 1(1), 1–23.

    Google Scholar 

  • Eriksson, D. (2019). The evolving EU regulatory framework for precision breeding. Theoretical and Applied Genetics, 132(3), 569–573.

    Article  PubMed  Google Scholar 

  • Evenson, R. E., & Gollin, D. (2003). Assessing the impact of the Green Revolution, 1960 to 2000. Science, 300(5620), 758–762.

    Article  CAS  PubMed  Google Scholar 

  • Fones, H. N., Bebber, D. P., Chaloner, T. M., Kay, W. T., Steinberg, G., & Gurr, S. J. (2020). Threats to global food security from emerging fungal and oomycete crop pathogens. Nature Food, 1(6), 332–342.

    Article  PubMed  Google Scholar 

  • Francesca, S., Simona, G., Francesco Nicola, T., Andrea, R., Vittorio, R., Federico, S., Cynthia, R., & Maria Lodovica, G. (2006). Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Global Change Biology, 12(7), 1299–1307.

    Article  Google Scholar 

  • Furman, B., Noorani, A., & Mba, C. (2021). On-farm crop diversity for advancing food security and nutrition. In Landraces-traditional variety and natural breed. IntechOpen.

    Google Scholar 

  • Giménez-Romero, A., Galván, J., Montesinos, M., Bauzà, J., Godefroid, M., Fereres, A., Ramasco, J. J., Matías, M. A., & Moralejo, E. (2022). Global predictions for the risk of establishment of Pierce’s disease of grapevines. Communications Biology, 5(1), 1389.

    Article  PubMed  PubMed Central  Google Scholar 

  • Godefroid, M., Morente, M., Schartel, T., Cornara, D., Purcell, A., Gallego, D., Moreno, A., Pereira, J. A., & Fereres, A. (2021). Climate tolerances of Philaenus spumarius should be considered in risk assessment of disease outbreaks related to Xylella fastidiosa. Journal of Pest Science, 1–14.

    Google Scholar 

  • Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., & Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2973–2989.

    Article  Google Scholar 

  • Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354–377.

    Article  Google Scholar 

  • Haeberle, H. S., Helm, J. M., Navarro, S. M., Karnuta, J. M., Schaffer, J. L., Callaghan, J. J., Mont, M. A., Kamath, A. F., Krebs, V. E., & Ramkumar, P. N. (2019). Artificial intelligence and machine learning in lower extremity arthroplasty: A review. The Journal of Arthroplasty, 34(10), 2201–2203.

    Article  PubMed  Google Scholar 

  • Harvey, J. A., Tougeron, K., Gols, R., Heinen, R., Abarca, M., Abram, P. K., Basset, Y., Berg, M., Boggs, C., Brodeur, J., & Cardoso, P. (2023). Scientists’ warning on climate change and insects. Ecological Monographs, 93(1), e1553.

    Article  Google Scholar 

  • Hooda, K. S., Singh, V., Bagaria, P., Gogoi, R., Kumar, S., & Shekhar, M. (2016). Emerging biotic constraints to maize production in the global climate change–An overview. Maize Journal, 5(1), 2.

    Google Scholar 

  • Hu, H., Scheben, A., & Edwards, D. (2018). Advances in integrating genomics and bioinformatics in the plant breeding pipeline. Agriculture, 8(6), 75.

    Article  Google Scholar 

  • Ikegami, M., & Jenkins, T. A. (2018). Estimate global risks of a forest disease under current and future climates using species distribution model and simple thermal model–Pine Wilt disease as a model case. Forest Ecology and Management, 409, 343–352.

    Article  Google Scholar 

  • Johnson, E. E., Escobar, L. E., & Zambrana-Torrelio, C. (2019). An ecological framework for modeling the geography of disease transmission. Trends in Ecology & Evolution, 34(7), 655–668.

    Article  Google Scholar 

  • Jönsson, A. M., Harding, S., Krokene, P., Lange, H., Lindelöw, Å., Økland, B., Ravn, H. P., & Schroeder, L. M. (2011). Modelling the potential impact of global warming on Ips typographus voltinism and reproductive diapause. Climatic Change, 109, 695–718.

    Article  Google Scholar 

  • Junk, J., Jonas, M., & Eickermann, M. (2016). Assessing meteorological key factors influencing crop invasion by pollen beetle (Meligethes aeneus F.)–past observations and future perspectives. Meteorologische Zeitschrift, 25, 357–364.

    Article  Google Scholar 

  • Juroszek, P., Racca, P., Link, S., Farhumand, J., & Kleinhenz, B. (2020). Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathology, 69(2), 179–193.

    Article  Google Scholar 

  • Khanfri, S., Boulif, M., & Lahlali, R. (2018). Yellow rust (Puccinia striiformis): A serious threat to wheat production worldwide. Notulae Scientia Biologicae, 10(3), 410–423.

    Article  CAS  Google Scholar 

  • Kremer, P., Schlüter, J., Racca, P., Fuchs, H. J., & Lang, C. (2016). Possible impact of climate change on the occurrence and the epidemic development of cercospora leaf spot disease (Cercospora beticola sacc.) in sugar beets for Rhineland-Palatinate and the southern part of Hesse. Climatic Change, 137, 481–494.

    Article  Google Scholar 

  • Launay, M., Zurfluh, O., Huard, F., Buis, S., Bourgeois, G., Caubel, J., Huber, L., & Bancal, M. O. (2020). Robustness of crop disease response to climate change signal under modeling uncertainties. Agricultural Systems, 178, 102733.

    Article  Google Scholar 

  • Litskas, V. D., Migeon, A., Navajas, M., Tixier, M. S., & Stavrinides, M. C. (2019). Impacts of climate change on tomato, a notorious pest and its natural enemy: Small scale agriculture at higher risk. Environmental Research Letters, 14(8), 084041.

    Article  Google Scholar 

  • Makkouk, K. M. (2020). Plant pathogens which threaten food security: Viruses of chickpea and other cool season legumes in West Asia and North Africa. Food Security, 12(3), 495–502.

    Article  Google Scholar 

  • Mandal, D. (2022). Natural resource management through conservation agriculture under climate change scenario. In Conservation agriculture and climate change (pp. 263–281). CRC Press.

    Google Scholar 

  • Martinetti, D., & Soubeyrand, S. (2019). Identifying lookouts for epidemio-surveillance: Application to the emergence of Xylella fastidiosa in France. Phytopathology, 109(2), 265–276.

    Article  PubMed  Google Scholar 

  • Maxmen, J. S. (1976). The post-physician era medicine in the 21st century.

    Google Scholar 

  • Mishra, B., Kumar, N., & Mukhtar, M. S. (2019). Systems biology and machine learning in plant–pathogen interactions. Molecular Plant-Microbe Interactions, 32(1), 45–55.

    Article  CAS  PubMed  Google Scholar 

  • Naylor, C. D. (2018). On the prospects for a (deep) learning health care system. JAMA, 320(11), 1099–1100.

    Article  PubMed  Google Scholar 

  • Orozco-Arias, S., Isaza, G., & Guyot, R. (2019). Retrotransposons in plant genomes: Structure, identification, and classification through bioinformatics and machine learning. International Journal of Molecular Sciences, 20(15), 3837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owino, V., Kumwenda, C., Ekesa, B., Parker, M. E., Ewoldt, L., Roos, N., et al. (2022). The impact of climate change on food systems, diet quality, nutrition, and health outcomes: A narrative review. Frontiers in Climate, 4.

    Google Scholar 

  • Paini, D. R., Mwebaze, P., Kuhnert, P. M., & Kriticos, D. J. (2018). Global establishment threat from a major forest pest via international shipping: Lymantria dispar. Scientific Reports, 8(1), 13723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ploetz, R. C. (2005). Panama disease: An old nemesis rears its ugly head: Part 1. The beginnings of the banana export trades. Plant Health Progress, 6(1), 18.

    Article  Google Scholar 

  • Racca, P., Kakau, J., Kleinhenz, B., & Kuhn, C. (2015). Impact of climate change on the phenological development of winter wheat, sugar beet and winter oilseed rape in Lower Saxony, Germany. Journal of Plant Diseases and Protection, 122(1), 16–27.

    Article  Google Scholar 

  • Ramirez-Cabral, N. Y. Z., Kumar, L., & Shabani, F. (2019). Suitable areas of Phakopsora pachyrhizi, S podoptera exigua, and their host plant Phaseolus vulgaris are projected to reduce and shift due to climate change. Theoretical and Applied Climatology, 135, 409–424.

    Article  Google Scholar 

  • Ransom, K. M., Nolan, B. T., Traum, J. A., Faunt, C. C., Bell, A. M., Gronberg, J. A. M., Wheeler, D. C., Rosecrans, C. Z., Jurgens, B., Schwarz, G. E., & Belitz, K. (2017). A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA. Science of the Total Environment, 601, 1160–1172.

    Article  PubMed  Google Scholar 

  • Rosenzweig, C., Iglesius, A., Yang, X. B., Epstein, P. R., & Chivian, E. (2001). Climate change and extreme weather events – Implications for food production, plant diseases, and pests.

    Google Scholar 

  • Salvacion, A. R., Cumagun, C. J. R., Pangga, I. B., Magcale-Macandog, D. B., Cruz, P. C. S., Saludes, R. B., Solpot, T. C., & Aguilar, E. A. (2019). Banana suitability and Fusarium wilt distribution in The Philippines under climate change. Spatial Information Research, 27, 339–349.

    Article  Google Scholar 

  • Schramowski, P., Stammer, W., Teso, S., Brugger, A., Herbert, F., Shao, X., Luigs, H. G., Mahlein, A. K., & Kersting, K. (2020). Making deep neural networks right for the right scientific reasons by interacting with their explanations. Nature Machine Intelligence, 2(8), 476–486.

    Article  Google Scholar 

  • Secretariat, I. P. P. C., Gullino, M. L., Albajes, R., Al-Jboory, I., Angelotti, F., Chakraborty, S., Garrett, K. A., Hurley, B. P., Juroszek, P., Makkouk, K., & Pan, X. (2021). Scientific review of the impact of climate change on plant pests. FAO on behalf of the IPPC Secretariat.

    Google Scholar 

  • Selvaraj, M. G., Vergara, A., Ruiz, H., Safari, N., Elayabalan, S., Ocimati, W., & Blomme, G. (2019). AI-powered banana diseases and pest detection. Plant Methods, 15, 1–11.

    Article  CAS  Google Scholar 

  • Shabani, F., Kumar, L., & Esmaeili, A. (2014). Future distributions of Fusarium oxysporum f. spp. in European, Middle Eastern and North African agricultural regions under climate change. Agriculture, Ecosystems & Environment, 197, 96–105.

    Article  Google Scholar 

  • Simler, A. B., Williamson, M. A., Schwartz, M. W., & Rizzo, D. M. (2019). Amplifying plant disease risk through assisted migration. Conservation Letters, 12(2), e12605.

    Article  Google Scholar 

  • Skelsey, P. (2021). Forecasting risk of crop disease with anomaly detection algorithms. Phytopathology, 111(2), 321–332.

    Article  PubMed  Google Scholar 

  • Snyder, C. W. (2016). Evolution of global temperature over the past two million years. Nature, 538(7624), 226–228.

    Article  CAS  PubMed  Google Scholar 

  • St-Marseille, A. F. G., Bourgeois, G., Brodeur, J., & Mimee, B. (2019). Simulating the impacts of climate change on soybean cyst nematode and the distribution of soybean. Agricultural and Forest Meteorology, 264, 178–187.

    Article  Google Scholar 

  • Stoeckli, S., Felber, R., & Haye, T. (2020). Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model. International Journal of Biometeorology, 64, 2019–2032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Storkey, J., Stratonovitch, P., Chapman, D. S., Vidotto, F., & Semenov, M. A. (2014). A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS One, 9(2), e88156.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor, R. A. J., Herms, D. A., Cardina, J., & Moore, R. H. (2018). Climate change and pest management: Unanticipated consequences of trophic dislocation. Agronomy, 8(1), 7.

    Article  Google Scholar 

  • Trębicki, P., Nancarrow, N., Cole, E., Bosque-Pérez, N. A., Constable, F. E., Freeman, A. J., Rodoni, B., Yen, A. L., Luck, J. E., & Fitzgerald, G. J. (2015). Virus disease in wheat predicted to increase with a changing climate. Global Change Biology, 21(9), 3511–3519.

    Article  PubMed  Google Scholar 

  • Tresson, P., Brun, L., de Cortazar-Atauri, I. G., Audergon, J. M., Buléon, S., Chenevotot, H., Combe, F., Dam, D., Jacquot, M., Labeyrie, B., & Mercier, V. (2020). Future development of apricot blossom blight under climate change in Southern France. European Journal of Agronomy, 112, 125960.

    Article  Google Scholar 

  • Turing, A. M. (1937). Computability and λ-definability. The Journal of Symbolic Logic, 2(4), 153–163.

    Article  Google Scholar 

  • Varanasi, A., Prasad, P. V., & Jugulam, M. (2016). Impact of climate change factors on weeds and herbicide efficacy. Advances in Agronomy, 135, 107–146.

    Article  Google Scholar 

  • Viitasalo, M., & Bonsdorff, E. (2022). Global climate change and the Baltic Sea ecosystem: Direct and indirect effects on species, communities and ecosystem functioning. Earth System Dynamics, 13(2), 711–747.

    Article  Google Scholar 

  • Viswanath, K., Sinha, P., Naresh Kumar, S., Sharma, T., Saxena, S., Panjwani, S., Pathak, H., & Shukla, S. M. (2017). Simulation of leaf blast infection in tropical rice agro-ecology under climate change scenario. Climatic Change, 142, 155–167.

    Article  Google Scholar 

  • Wallace, J. G., Rodgers-Melnick, E., & Buckler, E. S. (2018). On the road to breeding 4.0: Unraveling the good, the bad, and the boring of crop quantitative genomics. Annual Review of Genetics, 52, 421–444.

    Article  CAS  PubMed  Google Scholar 

  • Wamsler, C., Brink, E., & Rivera, C. (2013). Planning for climate change in urban areas: From theory to practice. Journal of Cleaner Production, 50, 68–81.

    Article  Google Scholar 

  • Wan, J. Z., & Wang, C. J. (2019). Contribution of environmental factors toward distribution of ten most dangerous weed species globally. Applied Ecology & Environmental Research, 17(6).

    Google Scholar 

  • Wang, C., Hawthorne, D., Qin, Y., Pan, X., Li, Z., & Zhu, S. (2017). Impact of climate and host availability on future distribution of Colorado potato beetle. Scientific Reports, 7(1), 4489.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, R., Li, Q., He, S., Liu, Y., Wang, M., & Jiang, G. (2018a). Modeling and mapping the current and future distribution of Pseudomonas syringae pv. Actinidiae under climate change in China. PLoS One, 13(2), e0192153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Xu, Y., Hu, Z., & Xu, C. (2018b). Genomic selection methods for crop improvement: Current status and prospects. The Crop Journal, 6(4), 330–340.

    Article  Google Scholar 

  • Wang, D., Cao, W., Zhang, F., Li, Z., Xu, S., & Wu, X. (2022). A review of deep learning in multiscale agricultural sensing. Remote Sensing, 14(3), 559.

    Article  Google Scholar 

  • West, A. M., Kumar, S., Wakie, T., Brown, C. S., Stohlgren, T. J., Laituri, M., & Bromberg, J. (2015). Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in Rocky Mountain National Park. PLoS One, 10(2), e0117893.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wienhold, B. J., Vigil, M. F., Hendrickson, J. R., & Derner, J. D. (2018). Vulnerability of crops and croplands in the US Northern Plains to predicted climate change. Climatic Change, 146, 219–230.

    Article  Google Scholar 

  • Xu, M., David, J. M., & Kim, S. H. (2018). The fourth industrial revolution: Opportunities and challenges. International Journal of Financial Research, 9(2), 90–95.

    Article  Google Scholar 

  • Zacarias, D. A. (2020). Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. Climatic Change, 161(4), 555–566.

    Article  CAS  Google Scholar 

  • Zheng, H., Li, W., Jiang, J., Liu, Y., Cheng, T., Tian, Y., Zhu, Y., Cao, W., Zhang, Y., & Yao, X. (2018). A comparative assessment of different modeling algorithms for estimating leaf nitrogen content in winter wheat using multispectral images from an unmanned aerial vehicle. Remote Sensing, 10(12), 2026.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, F., Rehman, A., Hameed, A., Sarfraz, S., Rajput, N.A., Atiq, M. (2024). Climate Change Impact on Plant Pathogen Emergence: Artificial Intelligence (AI) Approach. In: Abd-Elsalam, K.A., Abdel-Momen, S.M. (eds) Plant Quarantine Challenges under Climate Change Anxiety. Springer, Cham. https://doi.org/10.1007/978-3-031-56011-8_9

Download citation

Publish with us

Policies and ethics