Skip to main content

Optical Characteristics and Radiative Effects of Anthropogenic and Natural Aerosols Over an Urban Area

  • Chapter
  • First Online:
Aerosol Optical Depth and Precipitation

Abstract

Understanding aerosols is paramount, as an inadequate grasp of their properties and their variations across time and space could lead to irreversible consequences, with the potential for an overwhelming surge in atmospheric particle levels. Within the realm of aerosols, anthropogenic types, encompassing water-soluble aerosols and black carbon, hold sway over the “optical depth,” while natural aerosols, such as mineral dust and sea salt, dominate in terms of aerosol mass concentration. Empirical evidence confirms that black carbon aerosols play a substantial role in regional-scale global warming, contributing over 65% to the annual net atmospheric forcing. Moreover, black carbon aerosols significantly contribute to solar dimming, constituting 50% or more of radiative forcing at the Earth’s surface. The marked surface forcing and atmospheric warming induced by black carbon aerosols may exert a pronounced influence on the hydrological cycle. Tropospheric aerosols wield a substantial impact on the Earth’s climate, spanning local, regional, and global scales. In the atmospheric aerosol spectrum, two distinct categories emerge fine and coarse modes. Coarse mode aerosols, such as wind-borne mineral dust and sea salt particles, predominantly emanate from natural sources, while fine mode aerosols, prevalent over urban, industrialized, and densely populated regions, predominantly result from gas-to-particle conversion mechanisms stemming from activities like fossil fuel and biomass combustion, as well as other anthropogenic sources. The combustion of fossil fuels, particularly coal and biomass, has been identified as the leading contributor to global emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya, P., & Sreekesh, S. (2013). Seasonal variability in aerosol optical depth over India: A spatio-temporal analysis using the MODIS aerosol product. International Journal of Remote Sensor, 34(13), 4832–4849. https://doi.org/10.1080/01431161.2013.782114

    Article  Google Scholar 

  • Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfeld, A. J., Ramanathan, V., & Welton, E. J. (2000). Reduction of tropical cloudiness by soot. Science, 288(5468), 1042–1047. https://doi.org/10.1126/science.288.5468.1042

    Article  CAS  Google Scholar 

  • Alexandrov, M. D., Geogdzhayev, I. V., Tsigaridis, K., Marshak, A., Levy, R., & Cairns, B. (2016). New statistical model for variability of aerosol optical thickness: Theory and application to MODIS data over ocean. Journal Atmospheric Science, 73, 821–837. https://doi.org/10.1175/JAS-D-15-0130.1

    Article  Google Scholar 

  • Altaratz, O., Bar-Or, R. Z., Wollner, U., & Koren, I. (2013). Relative humidity, and its effect on aerosol optical depth in the vicinity of convective clouds. Environmental Research Letters, 8(3), 034025. https://doi.org/10.1088/1748-9326/8/3/034025

    Article  CAS  Google Scholar 

  • Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., & Silva – Dias, M. A. F. (2004). Smoking rain clouds over the Amazon. Science, 303(5662), 1337–1342. https://doi.org/10.1126/science.1092779

    Article  CAS  Google Scholar 

  • Bisht, L., Gupta, V., Singh, A., Gautam, A. S., & Gautam, S. (2021). Heavy metal concentration and its distribution analysis in urban road dust: A case study from most populated city of Indian state of Uttarakhand. Spatal and Spatio-Temporal Epidemology. https://doi.org/10.1016/j.sste.2021.100470

  • Blake, C. J. (2014). Quantifying the occurrence and magnitude of the Southeast Asian fire climatology. Environmental Research Letters, 9(11), 114018. https://doi.org/10.1088/1748-9326/9/11/114018

    Article  Google Scholar 

  • Boulon, J., Sellegri, K., Hervo, M., & Laj, P. (2011). Observations of nucleation of new particles in a volcanic plume. Proceedings of the National Academy of Sciences, 108(30), 12223–12226. https://doi.org/10.1073/pnas.1104923108

    Article  Google Scholar 

  • Brock, C. A., Cozic, J., Bahreini, R., Froyd, K. D., Middlebrook, A. M., McComiskey, A., Brioude, J., Cooper, O. R., Stohl, A., Aikin, K. C., de Gouw, J. A., Fahey, D. W., Ferrare, R. A., Gao, R. S., Gore, W., Holloway, J. S., Hübler, G., Jefferson, A., Lack, D. A., Lance, S., Moore, R. H., Murphy, D. M., Nenes, A., Novelli, P. C., Nowak, J. B., Ogren, J. A., Peischl, J., Pierce, R. B., Pilewskie, P., Quinn, P. K., Ryerson, T. B., Schmidt, K. S., Schwarz, J. P., Sodemann, H., Spackman, J. R., Stark, H., Thomson, D. S., Thornberry, T., Veres, P., Watts, L. A., Warneke, C., & Wollny, A. G. (2011). Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project. Atmospheric Chemistry and Physics, 11(6), 2423–2453. https://doi.org/10.5194/acp-11-2423-2011

    Article  CAS  Google Scholar 

  • Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., & Hofmann, J. (1992). Climate forcing by anthropogenic aerosols. Science, 255(5043), 423–430. https://doi.org/10.1126/science.255.5043.423

    Article  CAS  Google Scholar 

  • Chauhan, A., & Singh, R. P. (2020). Decline in PM2.5 concentrations over major cities around the world associated with COVID-19. Environmental Research, 187, 109634. https://doi.org/10.1016/j.envres.2020.109634

    Article  CAS  Google Scholar 

  • Chauhan, A., & Singh, R. P. (2021). Effect of lockdown on HCHO and trace gases over India during March 2020. Aerosol and Air Quality Research, 21(4), 200445. https://doi.org/10.4209/aaqr.2020.07.0445

    Article  CAS  Google Scholar 

  • Che, H., Zhang, X. Y., Xia, X., Goloub, P., Holben, B., Zhao, H., Wang, Y., Zhang, X. C., Wang, H., Blarel, L., Damiri, B., Zhang, R., Deng, X., Ma, Y., Wang, T., Geng, F., Qi, B., Zhu, J., Yu, J., Chen, Q., & Shi, G. (2015). Ground-based aerosol climatology of China: Aerosol optical depths from the China aerosol remote sensing network (CARSNET) 2002–2013. Atmospheric Chemistry and Physics, 15(13), 7619–7652. https://doi.org/10.5194/acp-15-7619-2015

    Article  CAS  Google Scholar 

  • Chelani, A., & Gautam, S. (2021). Lockdown during COVID-19 pandemic: A case study from Indian cities shows insignificant effects on urban air quality. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2021.101284

  • Chelani, A., & Gautam, S. (2022). The influence of meteorological variables and lockdowns on COVID-19 cases in urban agglomerations of Indian cities. Stochastic Environmental Research and Risk Assessment. https://doi.org/10.1007/s00477-021-02160-4

  • Chen, S., Zhao, C., Qian, Y., Leung, L. R., Huang, J. P., Huang, Z. W., Bi, J. R., Zhang, W., Shi, J. S., Yang, L., Li, D., & Li, J. X. (2014). Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem. Aeolian Research, 15, 15–30. https://doi.org/10.1016/j.aeolia.2014.02.001

    Article  CAS  Google Scholar 

  • Chen, S., Huang, J., Kang, L., Wang, H., Ma, X., He, Y., Yuan, T., Yang, B., Huang, Z., & Zhang, G. (2017). Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi deserts: Comparison of measurements and model results. Atmospheric Chemistry and Physics, 17(3), 2401–2421. https://doi.org/10.5194/acp-17-2401-2017

    Article  CAS  Google Scholar 

  • Cheng, F., Zhang, J., He, J., Zha, Y., Li, Q., & Li, Y. (2017). Analysis of aerosol-cloud-precipitation interactions based on MODIS data. Advances in Space Research, 59(1), 63–73. https://doi.org/10.1016/j.asr.2016.08.042

    Article  Google Scholar 

  • Chin, M. D. J., Jacob, G. M., Gardner, N. S., Foreman, F. P., Spiro, A., & Savoie, D. L. (1996). A global three-dimensional model of tropospheric sulfate. Journal of Geophysical Research, 101(D13), 18,667–18,690. https://doi.org/10.1029/96jd01221

    Article  CAS  Google Scholar 

  • Chuang, C. C., Penner, J. E., Taylor, K. E., Grossman, A. S., & Walton, J. J. (1997). An assessment of the radiative effects of anthropogenic sulfate. Journal of Geophysical Research, 102(D3), 3761–3778. https://doi.org/10.1029/96JD03087

    Article  CAS  Google Scholar 

  • Chung, C. E., Ramanathan, V., Kim, D., & Podgorny, I. A. (2005). Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. Geophysical Research, 110(D24207), 1–17. https://doi.org/10.1029/2005JD006356

    Article  Google Scholar 

  • Chylek, P., & Wong, J. (1995). Effect of absorbing aerosols on global radiation budget. Geophysical Research Letters, 22(8), 929–931. https://doi.org/10.1029/95GL00800

    Article  Google Scholar 

  • Cook, J., & Highwood, E. J. (2004). Climate response to tropospheric absorbing aerosols in an intermediate general-circulation model. Quarterly Journal of Royal Meteorological Society, 130(596), 175–191.

    Article  Google Scholar 

  • Copernicus Climate Change Service (C3S) ERA5. (2017). Fifth generation of ECMWF atmospheric reanalyzes of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), 12–01–2022. cds.climate.copernicus.eu/cdsapp#!/Home. Accessed Jan 2022.

    Google Scholar 

  • Dawson, J. P., Adams, P. J., & Pandis, S. N. (2007). Sensitivity of PM2.5 to climate in the eastern US: A modeling case study. Atmospheric Chemistry and Physics, 7(16), 4295–4309. https://doi.org/10.5194/acp-7-4295-2007

    Article  CAS  Google Scholar 

  • Dawson, J. P., Racherla, P. N., Lynn, B. H., Adams, P. J., & Pandis, S. N. (2009). Impacts of climate change on regional and urban air quality in the eastern United States: Role of meteorology. Journal of Geophysical Research, 114, D05308. https://doi.org/10.1029/2008JD009849

    Article  CAS  Google Scholar 

  • Deng, X., Shi, C., Wu, B., Chen, Z., Nie, S., He, D., & Zhang, H. (2012). Analysis of aerosol characteristics and their relationships with meteorological parameters over Anhui province in China. Atmospheric Research, 109–110, 52–63. https://doi.org/10.1016/j.atmosres.2012.02.011

    Article  CAS  Google Scholar 

  • Ervens, B., Turpin, B. J., & Weber, R. J. (2011). Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field, and model studies. Atmospheric Chemistry and Physics, 11(21), 11069–11102. https://doi.org/10.5194/acp-11-11069-2011

    Article  CAS  Google Scholar 

  • Fan, J., Zhang, R., Li, G., & Tao, W. K. (2007). Effects of aerosols and relative humidity on cumulus clouds. Journal of Geophysical Research: Atmospheres, 112(D14), 1–15. https://doi.org/10.1029/2006JD008136

    Article  CAS  Google Scholar 

  • Fan, J., Wang, Y., Rosenfeld, D., & Liu, X. (2016). Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. Journal Atmospheric Science, 73(11), 4221–4252. https://doi.org/10.1175/JAS-D-16-0037.1

    Article  Google Scholar 

  • Filonchyk, M., Yan, H., & Zhang, Z. (2018). Analysis of spatial and temporal variability of aerosol optical depth over China using MODIS combined dark target and deep blue product. Theoretical and Applied. Climatology, 1–18. https://doi.org/10.1007/s00704-018-2737-5

  • Gao, Y., Liu, X., Zhao, C., & Zhang, M. (2011). Emission controls versus meteorological conditions in determining aerosol concentrations in Beijing during the 2008 Olympic games. Atmospheric Chemistry and Physics, 11, 16655–16691. https://doi.org/10.5194/acpd-11-16655-2011

    Article  Google Scholar 

  • Gautam, S., Gautam, A. S., Singh, K., James, E. J., & Brema, J. (2021a). Investigations on the relationship among lightning, aerosol concentration, and meteorological parameters with specific reference to the wet and hot humid tropical zone of the southern parts of India. Environmental Technology& Innovation. https://doi.org/10.1016/j.eti.2021.101414

  • Gautam, A. S., Tripathi, S. N., Joshi, A., Mandariya, A. K., Singh, K., Mishra, G., & Ramola, R. C. (2021b). First surface measurement of variation of Cloud Condensation Nuclei (CCN) concentration over the Pristine Himalayan region of Garhwal, Uttarakhand, India. Atmospheric Environment, 246, 118123. https://doi.org/10.1016/j.atmosenv.2020.118123

    Article  CAS  Google Scholar 

  • Gautam, S., Patra, A. K., Brema, J., Raj, P. V., Raimond, K., Abraham, S. S., & Chudugudu, K. R. (2021c). Prediction of various sizes of particles in deep opencast copper mine using recurrent neural network: A machine learning approach. Journal of the Institution of Engineers (India) Series A. https://doi.org/10.1007/s40030-021-00589-y

  • Gautam, S., Elizabeth, J., Gautam, A. S., Singh, K., & Abhilash, P. (2022). Impact assessment of aerosol optical depth on rainfall in Indian rural areas. Aerosol Science Engineering, 6, 186–196. https://doi.org/10.1007/s41810-022-00134-9

    Article  Google Scholar 

  • Gollakota, A. R. K., Gautam, S., Santosh, M., Sudan, H. A., Gandhi, R., Jebadurai, V. S., & Shu, C. M. (2021). Bioaerosols: Characterization, pathways, sampling strategies, and challenges to geo-environment and health. Gondwana Research, 99, 178–203. https://doi.org/10.1016/j.gr.2021.07.003

    Article  Google Scholar 

  • Grandey, B. S., Gururaj, A., Stier, P., & Wagner, T. M. (2014). Rainfall-aerosol relationships explained by wet scavenging and humidity. Geophysical Research Letters, 41(15), 5678–5684. https://doi.org/10.1002/2016GL067770

    Article  Google Scholar 

  • Gryspeerdt, E., Stier, P., & Partridge, D. G. (2014). Links between satellite-retrieved aerosol and precipitation. Atmospheric Chemistry and Physics, 14(18), 9677–9694. https://doi.org/10.5194/acp-14-9677-2014

    Article  CAS  Google Scholar 

  • Gui, K., Che, H., Chen, Q., Zeng, Z., Zheng, Y., Long, Q., Sun, T., Liu, X., Wang, Y., Liao, T., Yu, J., Wang, H., & Zhang, X. (2017). Water vapor variation and the effect of aerosols in China. Atmospheric Environment, 165, 322–335. https://doi.org/10.1016/j.atmosenv.2017.07.005

    Article  CAS  Google Scholar 

  • Gunaseelan, I., Bhaskar, B. V., & Muthuchelian, K. (2014). The effect of aerosol optical depth on rainfall with reference to meteorology over metro cities in India. Environment Science Pollution Research, 21, 8188–8197. https://doi.org/10.1007/s11356-014-2711-4

    Article  Google Scholar 

  • Hänel, G. (1976). The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Advances in Geophysics, 19, 73–188. https://doi.org/10.1016/S0065-2687(08)60142-9

    Article  Google Scholar 

  • Huang, J., Lin, B., Minnis, P., Wang, T., Wang, X., Hu, Y., Yi, Y., & Ayers, J. K. (2006). Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophysical Research Letters, 33(19), L19802. https://doi.org/10.1029/2006GL026561

    Article  Google Scholar 

  • Humbal, C., Gautam, S., & Trivedi, U. (2018). A review on recent progress in observations, and health effects of Bioaerosols. Environment International, 118, 189–193. https://doi.org/10.1016/j.envint.2018.05.053

    Article  CAS  Google Scholar 

  • Humbal, C., Joshi, S. K., Trivedi, U. K., & Gautam, S. (2019). Evaluating the colonization and distribution of fungal and bacterial bioaerosol in Rajkot, western India using multi-proxy approach. Air Quality, Atmosphere & Health, 12(6), 693–704. https://doi.org/10.1007/s11869-019-00689-6

    Article  CAS  Google Scholar 

  • IPCC Climate Changes. (2007). The scientific basis, “Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change”. Cambridge University Press.

    Google Scholar 

  • Istomina, L. G., Hoyningen-Huene, W. V., Kokhanovsky, A. A., Schultz, E., & Burrows, J. P. (2011). Remote sensing of aerosols over snown using infrared AATSR observations. Atmospheric Measurement. Techniques., 4, 1133–1145. https://doi.org/10.5194/amt-4-1133-2011

    Article  Google Scholar 

  • Jiménez-Guerrero, P., Montávez, J. P., Gómez-Navarro, J. J., Jerez, S., & Lorente-Plazas, R. (2012). Impacts of climate change on ground level gas-phase pollutants and aerosols in the Iberian Peninsula for the late XXI century. Atmospheric Environment, 55, 483–495. https://doi.org/10.1016/j.atmosenv.2012.02.048

    Article  CAS  Google Scholar 

  • Jones, R. H., Westra, S., & Sharma, A. (2010). Observed relationships between extreme sub- daily precipitation, surface temperature, and relative humidity. Geophysical Research Letters, 37(22), L22805:1–5. https://doi.org/10.1029/2010GL045081

    Article  Google Scholar 

  • Kalpana, P., Prathibha, S., Gopinathan, P., Subramani, T., Roy, P. D., Gautam, S., & Brema, J. (2020). Spatio-temporal estimation of rainfall patterns in north and northwestern states of India between 1901 and 2015: Change point detections and trend assessments. Arabian Journal of Geosciences, 13, 1116. https://doi.org/10.1007/s12517-020-06098-9

    Article  Google Scholar 

  • Kaufman, Y. J. K. I., Remer, L. A., Rosenfeld, D., & Rudich, Y. (2005). The effect of smoke, dust, and pollution, aerosol on shallow cloud development over the Atlantic Ocean. Earth, Atmospheric, and Planetary Sciences, 102(32), 11207–11212. https://doi.org/10.1073/pnas.0505191102

    Article  CAS  Google Scholar 

  • Khaan, A., Rosenfeld, D., & Pokrovsky, A. (2005). Aerosol impact on the dynamics and microphysics of deep convective clouds. Quarterly Journal of Royal Meteorological Society, 131(611), 2639–2663. https://doi.org/10.1256/qj.04.62

    Article  Google Scholar 

  • Kim, D., Wang, C., Ekman, A. M. L., Barth, M. C., & Lee, D. I. (2014). The responses of cloudiness to the direct radiative effect of sulfate and carbonaceous aerosols. Journal Geophysics Research Atmospheres, 119(3), 1172–1185. https://doi.org/10.1002/2013JD020529

    Article  CAS  Google Scholar 

  • Kirk, K. (2023). Aerosols: Small particles with big climate effects. NASA’s Jet Propulsion Laboratory.

    Google Scholar 

  • Koren, I., Altaratz, O., Remer, L. A., Feingold, G., Martins, J. V., & Heiblum, R. H. (2012). Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nature Geoscience, 5(2), 118–122. https://doi.org/10.1038/ngeo1364

    Article  CAS  Google Scholar 

  • Lau, W. (2014). Atmospheric science: Desert dust and monsoon rain. Nature Geoscience, 7, 255–256. https://doi.org/10.1038/ngeo2115

    Article  CAS  Google Scholar 

  • Lau, K. M., & Kim, K. M. (2006). Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophysical Research Letters, 33(21), L21810. https://doi.org/10.1029/2006GL027546

    Article  Google Scholar 

  • Lau, K. M., Ramanathan, K., Wu, G. X., Li, Z., Tsay, S. C., Hsu, C., Sikka, R., Holben, B., Lu, D., Tartari, G., Chin, M., Koudelova, P., Chen, H., Ma, Y., Huang, J., Taniguchi, K., & Zhang, R. (2008). The joint aerosol monsoon experimental new challenge for monsoon climate research. Bulletin of the American Meteorological Society, 89, 369–383. https://doi.org/10.1175/BAMS-89-3-369

    Article  Google Scholar 

  • Levy, H., Horowitz, L., Schwarzkopf, M., Ming, Y., Golaz, J., Naik, V., & Ramaswamy, V. (2013). The roles of aerosol direct and indirect effects in past and future climate change. Journal Geophysics Research Atmospheres, 118(10), 4521–4532. https://doi.org/10.1002/jgrd.50192

    Article  Google Scholar 

  • Li, C., Bosch, C., Kang, S., Andersson, A., Chen, P., Zhang, Q., Cong, Z., Chen, B., Qin, D., & Gustafsson, Ö. (2016). Sources of black carbon to the Himalayan–Tibetan plateau glaciers. Nature Communications, 7, 12574. https://doi.org/10.1038/ncomms12574

    Article  CAS  Google Scholar 

  • Liu, Y., Huang, J., Shi, G., Takamura, T., Khatri, P., Bi, J., Shi, J., Wang, T., Wang, X., & Zhang, B. (2011). Aerosol optical properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China. Atmospheric Chemistry and Physics, 11(22), 11455–11463. https://doi.org/10.5194/acp-11-11455-2011

    Article  CAS  Google Scholar 

  • Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review, and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196–204. https://doi.org/10.1016/j.envres.2014.06.029

    Article  CAS  Google Scholar 

  • Matt, F. N., Burkhart, J. F., & Pietikäinen, J. P. (2018). Modelling hydrologic impacts of light absorbing aerosol deposition on snow at the catchment scale. Hydrology and Earth System Science, 22, 179–201. https://doi.org/10.5194/hess-22-179-2018

    Article  CAS  Google Scholar 

  • McCartney, E. J. (1976). Chapter 4: Optics of the atmosphere, scattering by molecules and particles (1st ed., pp. 176–215). Wiley.

    Google Scholar 

  • Meehl, G. A., Arblaster, J. M., & Collins, W. D. (2008). Effects of black carbon aerosols on the Indian monsoon. American Metrological Society, 21(12), 2869–2882. https://doi.org/10.1175/2007JCLI1777.1

    Article  Google Scholar 

  • Menon, S., Hansen, J., Nazarenko, L., & Luo, Y. (2002). Climate effects of black carbon aerosols in China and India. Science, 297(5590), 2250–2253. https://doi.org/10.1126/science.1075159

    Article  CAS  Google Scholar 

  • Miettinen, J., Hyer, E., Chia, A. S., Kwoh, L. K., & Liew, S. C. (2013). Detection of vegetation fires and burnt areas by remote sensing in insular Southeast Asian conditions: Current status of knowledge and future challenges. International Journal of Remote Sensing, 34(12), 4344–4366. https://doi.org/10.1080/01431161.2013.777489

    Article  Google Scholar 

  • Mukherjee, A., & Agrawal, M. (2017). World air particulate matter: Sources, distribution, and health effects. Environmental Chemistry Letters, 15(2), 283–309. https://doi.org/10.1007/s10311-017-0611-9

    Article  CAS  Google Scholar 

  • Nepal, S., Flügel, W. A., & Shrestha, A. B. (2014). Upstream-downstream linkages of hydrological processes in the Himalayan region. Ecological Processes, 3, 19. https://doi.org/10.1186/s13717-014-0019-4

    Article  Google Scholar 

  • Paliwal, U., Sharma, M., & Burkhart, J. F. (2016). Monthly and spatially resolved black carbon emission inventory of India: Uncertainty analysis. Atmospheric Chemistry and Physics, 16, 12457–12476. https://doi.org/10.5194/acp-16-12457-2016

    Article  CAS  Google Scholar 

  • Parry, M., Canziani, O., Palutikof, J., van der Linden, P. J., & Hanson, C. (2007). Climate change impacts, adaptation and vulnerability (p. 2007). Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Peterson, J. (1969). The climate of cities, a survey of recent literature (Nature Air pollution control admin. Publ. No. AP-59), pp. 21–24.

    Google Scholar 

  • Putaud, J. P., Dingenen, R. V., Alastuey, A., Bauer, H., Brimili, W., Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H. C., Harrison, R. M., Hermann, H., Hitzenberger, R., Hüglin, C., Jones, A. M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T. A. J., Löschau, G., & Raes, F. (2010). A European aerosol phenomenology 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment, 44, 1308–1320. https://doi.org/10.1016/j.atmosenv.2009.12.011

    Article  CAS  Google Scholar 

  • Qian, Y. U. N., Leung, L. R., Ghan, S. J., & Giorgi, F. (2011). Regional climate effects of aerosols over China: Modeling and observation. Tellus B Chemical and Physical. Meteorology, 55(4), 914–934. https://doi.org/10.3402/tellusb.v55i4.16379

    Article  Google Scholar 

  • Ramachandran, S., Srivastava, R., Kedia, S., & Rajesh, T. A. (2012). Contribution of natural and anthropogenic aerosols to optical properties and radiative effects over an urban location. Environmental Research Letters, 7, 034028 (11 pp). https://doi.org/10.1088/1748-9326/7/3/034028

    Article  CAS  Google Scholar 

  • Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1, 221–227. https://doi.org/10.1038/ngeo156

    Article  CAS  Google Scholar 

  • Ramanathan, V., & Ramana, M. V. (2005). Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic Plains. Pure and Applied Geophysics, 162, 1609–1626. https://doi.org/10.1007/s00024-005-2685-8

    Article  Google Scholar 

  • Ramanathan, V., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrologic cycle. Science, 294(5549), 2119–2124. https://doi.org/10.1126/science.1064034

    Article  CAS  Google Scholar 

  • Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T., Washington, W. M., Fu, Q., Sikka, D. R., & Wild, M. (2005). Atmospheric brown clouds: Impacts on south Asian climate and hydrological cycle. Earth, Atmospheric, and Planetary Sciences, 102(15), 5326–5333. https://doi.org/10.1073/pnas.0500656102

    Article  CAS  Google Scholar 

  • Ramanathan, V., Ramana, M. V., Roberts, G., Kim, D., Corrigan, C., Chung, C., & Winker, D. (2007). Warming trends in Asia amplified by brown cloud solar absorption. Nature, 448, 575–578. https://doi.org/10.1038/nature06019

    Article  CAS  Google Scholar 

  • Ramasubramanian, M. (1998). Study of SO2 and NO2 levels in some selected zones of Madurai City. Master thesis, School of Energy Sciences, Madurai Kamaraj University, Madurai, India.

    Google Scholar 

  • Ranjan, R. R., Joshi, H. P., & Iyer, K. N. (2007). Spectral variation of total column aerosol optical depth over Rajkot: A tropical semi-arid Indian Station. Aerosol and Air Quality Research, 7(1), 33–45. https://doi.org/10.4209/aaqr.2006.08.0012

    Article  Google Scholar 

  • Rosenfeld, D., Rosenfeld, D., Lohmann, U., Graciela, B. R., Odowd, C. D., Kulmala, M., Fuzzi, S., Reisseli, A., & Andreae, M. O. (2008). Flood or drought: How do aerosols affect precipitation. Science, 321(5894), 1309–1313. https://doi.org/10.1126/science.1160606

    Article  CAS  Google Scholar 

  • Sarkar, T., & Mishra, M. (2018). Soil erosion susceptibility mapping with the application of logistic regression and artificial neural, network. Journal of Geovisualization and Spatial Analysis, 2(1), 8. https://doi.org/10.1007/s41651-018-0015-9

    Article  Google Scholar 

  • Shang, H., Chen, L., Tao, J., Lin, S., & Jia, S. (2014). Synergetic use of MODIS cloud parameters for distinguishing high aerosol loadings from clouds over the North China plain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(12), 4879–4886. https://doi.org/10.1109/JSTARS.2014.2332427

    Article  Google Scholar 

  • Sievering, H., Gorman, E., Ley, T., Pszenny, A., Springer Young, M., Boatman, J., Kim, Y., Nagamoto, C., & Wellman, D. (1995). Ozone oxidation of sulfur in sea-salt aerosol particles during the Azores Marine Aerosol and gas exchange experiment. Journal of Geophysical Research, 100(D11), 23,075–23,081. https://doi.org/10.1029/95JD01250

    Article  CAS  Google Scholar 

  • Solomon, S., Qin, D., Manning, M., Averyt, K., & Marquis, M. (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press.

    Google Scholar 

  • Soni, A. K. (2015). Mining in the Himalayas: An integrated strategy. CRC Press.

    Google Scholar 

  • Souza, A., Ihaddadene, R., Ihaddadene, N., & Oguntunde, P. E. (2019). Clarity index analysis and modeling using probability distribution functions in Campo Grande-MS. Journal of Solar Energy Engineering, 141(6), 061001. https://doi.org/10.1115/1.4043615

    Article  Google Scholar 

  • Srivastava, A. K., Dey, S., & Tripathi, S. N. (2012). Aerosol characteristics over the Indo-Gangetic basin: implications to regional climate. In A.-R. Hayder (Ed.), Atmospheric aerosols-regional characteristics-chemistry and physics. Intech.

    Google Scholar 

  • Steiner, W. A. (1994). The influence of air pollution on moss-dwelling animals, I, methodology and composition of flora and fauna. Revue Suisse de Zoologie, 101(2), 533–556. https://doi.org/10.5962/bhl.part.79917

    Article  Google Scholar 

  • Streets, D. G., Yan, F., Chin, M., Diehl, T., Mahowald, N., Schultz, M., Wild, M., Wu, Y., & Yu, C. (2009). Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006. Journal of Geophysical Research, 114, D00D18. https://doi.org/10.1029/2008JD011624

    Article  CAS  Google Scholar 

  • Tao, W. K., Chen, J. P., Li, Z., Wang, C., & Zhang, C. (2012). Impact of aerosols on convective clouds and precipitation. Reviews of Geophysics, 50(2), RG2001.

    Article  Google Scholar 

  • Taylor, D. (2010). Biomass burning, humans and climate change in Southeast Asia. Biodiversity and Conservation, 19(4), 1025–1042. https://doi.org/10.1007/s10531-009-9756-6

    Article  Google Scholar 

  • Tim, S. (2021). Solar geoengineering: Can we cool the planet. Nature and Environment. Global Issues. https://www.dw.com/en/solar-geoengineering-global-warming-cooler-planet/a-58051069

  • Twomey, S. (1977). The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Sciences, 34, 1149–1151.

    Article  Google Scholar 

  • Wang, Y. W., & Yang, Y. H. (2014). China’s dimming and brightening: Evidence, causes and hydrological implications. Annales Geophysicae, 32(1), 41–55. https://doi.org/10.5194/angeo-32-41-2014

    Article  CAS  Google Scholar 

  • Yang, X., Ferrat, M., & Li, Z. Q. (2013). New evidence of orographic precipitation suppression by aerosols in Central China. Meteorology and Atmospheric Physics, 119(1–2), 17–29. https://doi.org/10.1007/s00703-012-0221-9

    Article  Google Scholar 

  • Zhang, Z. J., Wang, L., Chen, X., Chen, G., Sun, N., Zhong, H., Kan, L., & W. (2014). Impact of haze and air pollution-related hazards on hospital admissions in Guangzhou, China. Environmental Science and Pollution Research, 21, 4236–4244. https://doi.org/10.1007/s11356-013-2374-6

    Article  CAS  Google Scholar 

  • Zhang, Y., Forrister, H., Liu, J., Dibb, J., Anderson, B., Schwarz, J. P., Perring, A. E., Jimenez, J. L., Campuzano-Jost, P., Wang, Y., Nenes, A., & Weber, R. J. (2017a). Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. Nature Geoscience, 10, 486–489. https://doi.org/10.1038/ngeo2960

    Article  CAS  Google Scholar 

  • Zhang, Z., Wu, W., Wei, J., Song, Y., Yan, X., Zhu, L., & Wang, Q. (2017b). Aerosol optical depth retrieval from visibility in China during 1973–2014. Atmospheric Environment, 171, 38–48. https://doi.org/10.1016/j.atmosenv.2017.09.004

    Article  CAS  Google Scholar 

  • Zveryaev, I. I., & Aleksandrova, P. M. (2004). Differences in rainfall variability in the South and Southeast Asian summer monsoons. International Journal of Climatology, 24(9), 1091–1107. https://doi.org/10.1002/joc.1044

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

AL-Jawhary, I.F.H. (2024). Optical Characteristics and Radiative Effects of Anthropogenic and Natural Aerosols Over an Urban Area. In: Gautam, S., Kumar, R.P., Samuel, C. (eds) Aerosol Optical Depth and Precipitation. Springer, Cham. https://doi.org/10.1007/978-3-031-55836-8_7

Download citation

Publish with us

Policies and ethics