Skip to main content

Impact Assessments of Aerosol Optical Depth and Lightning on Thunderstorm Over the Region of Uttarakhand, India

  • Chapter
  • First Online:
Aerosol Optical Depth and Precipitation

Abstract

This study delves into the temporal and spatial dynamics of various atmospheric parameters and lightning activity in Uttarakhand, India. Between January and May, there was a notable surge in aerosol optical depth (AOD) attributed to an inflow of aerosols from the Thar Desert and arid regions. AOD peaks in May and subsequently diminishes due to the removal of aerosols from the atmosphere. The month of May exhibits the highest lightning activity, accompanied by noteworthy events in March, April, June, July, August, and September. However, the peak flash rate in May (0.065 flashes/km2/day) is high in comparison to reported values (6.5 flashes/km2/day) over the monsoon zone of India. Convective Available Potential Energy (CAPE) values exhibit an ascending trend from January onwards, reaching their highest values in May, July, and August, driven by rising surface temperatures. Conversely, surface cooling in June leads to a reduction in lightning activity. Lower Outgoing Longwave Radiation (OLR) values observed in June and July suggest the presence of clouds, resulting in substantial rainfall, particularly in Uttarakhand (10975.79 mm and 9640.69 mm). This pattern bears resemblance to findings in the Indian monsoon zone reported previously. Spatially, Uttarakhand experiences distinct seasonal variations in lightning activity, with the lowest in the summer foothills and the highest in the southeastern region from July to September, primarily driven by summer and monsoon convection. Principal component analysis (PCA) reveals robust correlations between flash count, CAPE, and temperature, primarily influenced by land surface heating during the pre-monsoon and monsoon seasons. The flash count also demonstrates a significant positive correlation with AOD, suggesting an impact of aerosols on lightning. OLR shows a negative correlation with flash count in the monsoon zone. Based on seasonal variation, AOD dominance during the pre-monsoon and monsoon seasons, increased lightning activity, reduced OLR values, and a positive correlation between AOD and lightning frequency under clean conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babu, S. S., Manoj, M. R., Moorthy, K. K., Gogoi, M. M., Nair, V. S., Kompalli, S. K., et al. (2013). Trends in aerosol optical depth over Indian region: Potential causes and impact indicators. Journal of Geophysical Research: Atmospheres, 118(20), 11–794. https://doi.org/10.1002/2013JD020507

    Article  Google Scholar 

  • Bargali, H., Kumar, A., & Singh, P. (2022). Plant studies in Uttarakhand, Western Himalaya: A comprehensive review. Trees, Forests and People, 100203. https://doi.org/10.1016/j.tfp.2022.100203

  • Bhattacharya, A., Venkataraman, C., Sarkar, T., Sharma, A. K., Sharma, A., Anand, S., et al. (2022). An analysis of the aerosol lifecycle over India: COALESCE intercomparison of three general circulation models. Journal of Geophysical Research: Atmospheres, 127(14), e2022JD036457. https://doi.org/10.1029/2022JD036457

    Article  CAS  Google Scholar 

  • Census. (2011). Uttarakhand population census 2011, Uttarakhand religion, literacy, sex ratio - Census India. https://www.censusindia.co.in//states/uttarakhand

  • Chauhan, A., & Singh, R. P. (2021). Effect of lockdown on HCHO and trace gases over India during March 2020. Aerosol and Air Quality Research, 21, 200445. https://doi.org/10.4209/AAQR.2020.07.0445

    Article  CAS  Google Scholar 

  • FSI. (2017). India state of forest report 2017. Forest Survey of India, Ministry of Environment, Forest and Climate Change. Government of India, Dehradun.

    Google Scholar 

  • Gadgil, S, & Srinivasan, J. (1990). Low Frequency Variation of Tropical Convergence Zones. Me- Teorol Atmos Physical 44: 119–132. https://doi.org/10.1007/BF01026814

  • Gaur, A., Kumar, S., Vandita, S., Kumar, S., Singh, K., & Gautam, A. S. (2021). A case study of forest fires in Uttarakhand and adjoining areas in India. Journal of Science and Technological Researches, 3, 62. https://doi.org/10.51514/JSTR.3.3.2021.62-70

    Article  CAS  Google Scholar 

  • Gautam, A. S., Nainwal, H. C., Negi, R. S., Kumar, S., & Singh, K. (2021). Study of the aerosol parameters and radiative forcing during COVID-19 pandemic over Srinagar Garhwal, Uttarakhand. In Environmental resilience and transformation in times of COVID-19: Climate change effects on environmental functionality (pp. 163–172). https://doi.org/10.1016/B978-0-323-85512-9.00028-0

    Chapter  Google Scholar 

  • Gautam, A. S., Joshi, A., Chandra, S., Dumka, U. C., Siingh, D., & Singh, R. P. (2022a). Relationship between lightning and aerosol optical depth over the Uttarakhand region in India: Thermodynamic perspective. Urban Science, 6(4), 70. https://doi.org/10.3390/urbansci6040070

    Article  Google Scholar 

  • Gautam, A. S., Singh, K. P., Sharma, M., Gautam, S., Joshi, A., & Kumar, S. (2022b). Classification of different sky conditions based on solar radiation extinction and the variability of aerosol optical depth, Angstrom exponent, fine particles over Tehri Garhwal, Uttarakhand, India. Mapan-Journal of Metrology Society of India, 38(1), 21–36. https://doi.org/10.1007/s12647-022-00533-w

    Article  Google Scholar 

  • Gautam, A., Singh, V., Gautam, A. S., Kumar, P. R., Soni, P. S., Singh, R., & Singh, S. P. (2023). Lightning development over the distinct climate regions of Uttarakhand, India. Indian Journal of Science and Technology, 16(9), 632–639. https://doi.org/10.17485/IJST/v16i9.1886

    Article  Google Scholar 

  • Ghanekar, S. P., Puranik, P. V., & Bhide, U. V. (2003). Forecasting the onset of monsoon over Kerala using the peak in pre-monsoon convective activity over south peninsular India. Mausam, 54(3), 645–652. https://doi.org/10.54302/MAUSAM.V54I3.1555

    Article  Google Scholar 

  • Jnanesh, S. P., Lal, D. M., Gopalakrishnan, V., Ghude, S. D., Pawar, S. D., Tiwari, S., & Srivastava, M. K. (2022). Lightning characteristics over humid regions and arid regions and their association with aerosols over Northern India. Pure and Applied Geophysics, 179(4), 1403–1419. https://doi.org/10.1007/s00024-022-02981-6

    Article  CAS  Google Scholar 

  • Krehbiel, P. (1986). The Electrical Structure of Thunderstorms, in the Earth’s Electrical Environment, 90–113. Washington, D.C.: Nat’l. Academy Press.

    Google Scholar 

  • Kumar, P. (2018). Lightning, rainfall, AOD, and convection variabilities in the monsoon zone of India. International Journal of Remote Sensing, 39(3), 727–740. https://doi.org/10.1080/01431161.2017.1392636

    Article  Google Scholar 

  • Lal, D. M., Ghude, S. D., Mahakur, M., Waghmare, R. T. & Chate, D. M. (2018). Relationship between aerosol and lightning over Indo-Gangetic Plain (IGP), India. Climate Dynamics, 50(483), 3865–3884.

    Google Scholar 

  • Manohar, G. K., Kandalgaonkar, S. S. & Tinmake, M. I. R. (1999). Tinmaker, Thunder- storm activity over India and the Indian southwest monsoon, Journal of Geophysical Research, 104, 4169–4188.

    Google Scholar 

  • Negi, S. S. (1991). Himalayan rivers, lakes, and glaciers. Indus Pub. Co.

    Google Scholar 

  • Oulkar, S., Siingh, D., Saha, U., & Kamra, A. K. (2019). Distribution of lightning in relation to topography and vegetation cover over the dry and moist regions in the Himalayas. Journal of Earth System Science, 128(7), 1–17. https://doi.org/10.1007/S12040-019-1203-9/METRICS

    Article  Google Scholar 

  • Petersen, W. A., & S. A. Rutledge (1998). On the relationship between cloud-toground lightning and convective rainfall, J. Geophys. Res., 103, 14,025–14,040.

    Google Scholar 

  • Ramesh Kumar, P., & Kamra, A. K. (2012). The spatiotemporal variability of lightning activity in the Himalayan foothills. Journal of Geophysical Research: Atmospheres, 117(D24), 24201. https://doi.org/10.1029/2012JD018246

    Article  Google Scholar 

  • Rao, K. R. M., Kant, Y., Gahlaut, N., & Roy, P. S. (2012). Assessment of quality of life in Uttarakhand, India using geospatial techniques. Geocarto International, 27(4), 315–328. https://doi.org/10.1080/10106049.2011.627470

    Article  Google Scholar 

  • Shi, Z., Wang, H., Tan, Y., et al. (2020). Influence of aerosols on lightning activities in central eastern parts of China. Wiley Online Library, 21(2). https://doi.org/10.1002/asl.957

  • Singh, R. P., & Chauhan, A. (2020). Impact of lockdown on air quality in India during COVID-19 pandemic. Air Quality, Atmosphere and Health, 13, 921–928. https://doi.org/10.1007/S11869-020-00863-1/FIGURES/5

    Article  CAS  Google Scholar 

  • Sudeepkumar, B. L., Babu, C. A., & Varikoden, H. (2022). Variations in monsoon boundary layer structure with respect to cloudiness over the west coast of India. Meteorology and Atmospheric Physics, 134, 1–13. https://doi.org/10.1007/s00703-021-00839-5

    Article  Google Scholar 

  • Tesfaye, M., Sivakumar, V., Botai, J., & Mengistu Tsidu, G. (2011). Aerosol climatology over South Africa based on 10 years of Multiangle Imaging Spectroradiometer (MISR) data. Journal of Geophysical Research: Atmospheres, 116(D20). https://doi.org/10.1029/2011JD016023

  • Tinmaker, M. I. R., Jena, C. K., Ghude, S. D., Dwivedi, A. K., Islam, S., Kulkarni, S. H., et al. (2021). Relationship of lightning with different weather parameters during transition period of dry to wet season over Indian region. Journal of Atmospheric and Solar-Terrestrial Physics, 220, 105673. https://doi.org/10.1016/j.jastp.2021.105673

    Article  Google Scholar 

  • Venevsky, S. (2014). Importance of aerosols for annual lightning production at global scale, Atmospheric Chemistry and Physics Discussions, 14, 4303–4325. https://doi.org/10.5194/acpd-14-4303-2014

  • Williams, E. R. (2005). Lightning and climate: A review, Atmospheric Research, 76, 1–4, 272–287. https://doi.org/10.1016/j.atmosres.2004.11.014

  • Williams, E. R., & Sátori G. (2004). Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys, Journal of Atmospheric and Solar-Terrestrial Physics, 66, 1213–1231. https://doi.org/10.1016/j.jastp.2004.05.015

  • Williams, E., & Stanfill, S. (2002). The physical origin of the land–ocean contrast in lightning activity. Comptes Rendus Physique, 3(10), 1277–1292. https://doi.org/10.1016/s1631-0705(02)01407-x

  • Yuan, T., & Qie, X. (2008). Study on lightning activity and precipitation characteristics before and after the onset of the south China sea summer monsoon. Journal of Geophysical Research, 113(D14), D14101.

    Google Scholar 

  • Zhao, P., Li, Z., Xiao, H., Fang, W., Zheng, Y., Cribb, M. C., Jin, X., & Zhou, Y. (2020). Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China. Atmospheric Chemistry and Physics, 20(21), 13379–13397. https://doi.org/10.5194/acp-20-13379-2020

    Article  CAS  Google Scholar 

  • Zheng, S., Singh, R. P., Wu, Y., & Wu, C. (2017). A comparison of trace gases and particulate matter over Beijing (China) and Delhi (India). Water, Air, and Soil Pollution, 228, 1–15. https://doi.org/10.1007/S11270-017-3360-2/TABLES/4

    Article  CAS  Google Scholar 

  • Zipser, E. J., & Lutz, K. R. (1994). The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?, Monthly Weather Review, 122, 1751–1759.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gautam, A.S., Kumar, S., Singh, K., Nautiyal, S.N., Gautam, S. (2024). Impact Assessments of Aerosol Optical Depth and Lightning on Thunderstorm Over the Region of Uttarakhand, India. In: Gautam, S., Kumar, R.P., Samuel, C. (eds) Aerosol Optical Depth and Precipitation. Springer, Cham. https://doi.org/10.1007/978-3-031-55836-8_2

Download citation

Publish with us

Policies and ethics