Skip to main content

Anthropogenic Influence on Aerosol Optical Depth

  • Chapter
  • First Online:
Aerosol Optical Depth and Precipitation

Abstract

Aerosols play a significant role in the Earth’s atmospheric dynamics. Aerosol optical depth (AOD) stands out as the paramount parameter for assessing aerosol loads in the atmosphere, particularly through satellite measurements. AOD is influenced by a complex interplay of meteorological and anthropogenic factors. While these factors are inherently intertwined, the pressing need for clean air is increasingly recognized as an existential crisis.

The surge in AOD can be attributed to various drivers of economic development, including increased energy demand, urbanization, and population growth. Additionally, activities such as biomass burning, industrial emissions, and construction contribute significantly to AOD, with emissions of precursors like NO2 and SO2 playing crucial roles. The diversity of aerosol types further complicates the assessment of AOD; each type exerts its own distinct influence on atmospheric dynamics.

Moreover, the size of aerosols also plays a discernible role in their impact. The combination of aerosols and their interaction with atmospheric dynamics adds further complexity. AOD and cloud dynamics are intricately linked, and their combined effects can lead to extreme precipitation events or droughts, influenced by factors such as relative humidity and temperature.

While the implications of rising AOD vary across different landscapes, the imperative to mitigate its effects on climate and health remains paramount. Strategic planning and policies enacted by lawmakers have the potential to mitigate the anthropogenic impact of aerosols and slow down the progression of climate change. This chapter aims to provide insights into the human influence on AOD, including its sources, types, influence on precipitation, and strategies for aerosol mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken, J. (1980). On dust, fogs, and clouds. Proceedings. Royal Society of Edinburgh, 9, 14–18.

    Google Scholar 

  • Andreae, M. (1995). Climatic effects of changing atmospheric aerosol levels. In A. Henderson-Sellers (Ed.), World survey of climatology (Future climates of the world) (Vol. 16, pp. 341–392). Elsevier.

    Google Scholar 

  • Ashworth, J. R. (1929). The influence of smoke and hot gases from factory chimneys on rainfall. Quarterly Journal of the Royal Meteorological Society, 55, 341–350.

    Article  Google Scholar 

  • Babu, S. S., Satheesh, S. K., & Moorthy, K. K. (2002). Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophysical Research Letters, 29(18), 1880–1883.

    Article  Google Scholar 

  • Bollasina, M. A., Ming, Y., & Ramaswamy, V. (2011). Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502–505.

    Article  CAS  Google Scholar 

  • Cachier, H., Bbremond, M. P., & Buatmenard, P. (1989). Carbonaceous aerosols from different tropical biomass burning sources. Nature, 340, 371–373.

    Article  CAS  Google Scholar 

  • Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, V., Logan, J. A., Higurashi, A., & Nakajima, T. (2002). Journal of the Atmospheric Sciences, 59, 461–483.

    Article  Google Scholar 

  • Clarke, A. D., Ahlquist, N. C., & Covert, D. S. (1987). The Pacific marine aerosols: Evidence for natural acid sulphates. Journal of Geophysical Research, 92, 4179–4190.

    Article  CAS  Google Scholar 

  • D’Almeida, G. A., Koepke, P., & Shettle, E. P. (1991). Atmospheric aerosols—Global climatology and radiative characteristics (p. 561). A. Deepak, Hampton, VA.

    Google Scholar 

  • De, U. S., & Dandekar, M. M. (2001). Natural disasters in urban areas. Deccan Geographer, 39, 1–12.

    Google Scholar 

  • Dong, Z., Wang, L., Xu, P., Pimonsree, S., Limsakul, A., & Singhruck, P. (2021). Interdecadal variation of the wintertime precipitation in Southeast Asia and its possible causes. Journal of Climate, 34, 3503–3521. https://doi.org/10.1175/JCLI-D-20-0480.1

  • Ganguly, D., Rasch, P. J., Wang, H., & Yoon, J.-H. (2012). Climate response of the South Asian monsoon system to anthropogenic aerosols. Journal of Geophysical Research, 117, D13209.

    Article  Google Scholar 

  • Gautam, R., Hsu, N., Lau, K.-M., & Kafatos, M. (2009). Aerosol and rainfall variability over the Indian monsoon region: Distributions, trends and coupling. Annales Geophysicae, 27, 3691–3703.

    Article  CAS  Google Scholar 

  • Gupta, A. K., & Nair, S. S. (2011). Urban floods in Bangalore and Chennai: Risk management challenges and lessons for sustainable urban ecology. Current Science, 100(11), 1638–1645.

    Google Scholar 

  • Harrison, R. M., & McCatrney, H. A. (1979). Some measurements of ambient air-pollution arising from the manufacturing of nitric acid and ammonium nitrate fertilizer. Atmospheric Environment, 13(8), 1105–1120.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Peak, J. D., & Msibi, M. I. (1996). Measurements of airborne particulate and gaseous Sulphur and nitrogen species in the area of the Azores, Atlantic Ocean. Atmospheric Environment, 30(1), 133–143.

    Article  CAS  Google Scholar 

  • Hoppel, W. A., Fitzgerald, J. W., Frick, G. M., & Larson, R. F. (1990). Aerosol size distribution and optical properties found in the marine boundary layer over the Atlantic Ocean. Journal of Geophysical Research, 95, 3659–3686.

    Article  Google Scholar 

  • Horvath, H. (1993). Atmospheric light absorption: A review. Atmospheric Environment, 27, 293–317.

    Article  Google Scholar 

  • Huff, F. A., & Changnon, S. A. (1973). precipitation modification by major urban areas. Bulletin of the American Meteorological Society, 54(12), 1220–1232. http://www.jstor.org/stable/26255213

  • Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695–697.

    Article  CAS  Google Scholar 

  • Jacobson, M. Z. (2002). Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. Journal of Geophysical Research, D. 107, D4410(1–12).

    Google Scholar 

  • Kaufman, Y. J., & Fraser, R. S. (1997). The effect of smoke particles onclouds and climate forcing. Science, 277, 1636–1639.

    Article  CAS  Google Scholar 

  • Kaufman, Y. J., Tanre, D., & Boucher, O. (2002). A satellite view of aerosols in the climate system. Nature, 419(6903), 215.

    Article  CAS  Google Scholar 

  • Kishtawal, C. M., Niyogi, D., Tewari, M., Pielke, R. A., & Shepherd, J. M. (2010). Urbanization signature in the observed heavy rainfall climatology over India. International Journal of Climatology, 30(13), 1908–1916.

    Article  Google Scholar 

  • Kittelson, D. B. (1998). Engines and nanoparticles: A review. Journal of Aerosol Science, 29(5), 575–588. https://doi.org/10.1016/S0021-8502(97)10037-4

  • Kratzer, P. A. (1956). The climate of cities (AMS Translation) Bedfrd, Mass, A. F. Cambridge Research Laboratories Wexler (AFCRL -62- 837) (p. 215).

    Google Scholar 

  • Lau, K. M., Kim, M. K., & Kim, K. M. (2006). Asian monsoon anomalies induced by aerosol direct effects. Climate Dynamics, 26, 855–864.

    Article  Google Scholar 

  • Lau, K. M., Ramanathan, V., Wu, G.-X., Li, Z., Tsay, S. C., Hsu, C., Siika, R., Holben, B., Lu, D., Tartari, G., Chin, M., Koudelova, P., Chen, H., Ma, Y., Huang, J., Taniguchi, K., & Zhang, R. (2008). The joint aerosol-monsoon experiment: A new challenge in monsoon climate research. Bulletin of the American Meteorological Society, 89, 369–383.

    Article  Google Scholar 

  • Lei, M., Niyogi, D., Kishtawal, C., PielkeSr, R. A., Beltrn-Przekurat, A., Nobis, T., & Vaidya, S. (2008). Effect of explicit urban land surface representation on the simulation of the 26 July 2005 heavy rain event over Mumbai, India. Atmospheric Chemistry and Physics, 8(20), 5975–5995.

    Article  CAS  Google Scholar 

  • Lippmann, M. (Ed.). (2000). Environmental toxicants: Human exposure and their health effects. Wiley.

    Google Scholar 

  • Lowry, W. P. (1977). Empirical estimation of urban effects on climate: A problem analysis. Journal of Applied Meteorology, 16(2), 129–135.

    Article  Google Scholar 

  • Miller, R. L., & Tegen, I. (1998). Climate response of soil dust aerosols. Journal of Climate, 11, 3247–3267.

    Article  Google Scholar 

  • Mitra, C., Shepherd, J. M., & Jordan, T. (2012). On the relationship between the premonsoonal rainfall climatology and urban land cover dynamics in Kolkata city, India. International Journal of Climatology, 32(9), 1443–1454.

    Article  Google Scholar 

  • Novakov, T., Andreae, M. O., Gabriel, R., Kirchstetter, T. W., Mayol-Bracero, O. L., & Ramnathan, V. (2000). Origin of carbonaceous aerosols over tropical Indian Ocean: Biomass burning or fossil fuel? Geophysical Research Letters, 27, 4061–4063.

    Article  CAS  Google Scholar 

  • O’Dowd, C., & de Leeuw, G. (2007). Marine aerosol production: A review of the current knowledge. Philosophical Transactions of the Royal Society of London. Series A, 365, 1753–1774.

    Google Scholar 

  • Pavuluri, C. M., Kawamura, K., Tachibana, E., & Swaminathan, T. (2010). Elevated nitrogen isotope ratios of tropical Indian aerosols from Chennai: Implication for the origins of aerosol nitrogen in South and Southeast Asia. Atmospheric Environment, 44, 3597. https://doi.org/10.1016/j.atmosenv.2010.05.039

    Article  CAS  Google Scholar 

  • Penner, J. E., et al. (2001). Aerosols, their direct and indirect effects. In Climate change 2001, Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (TAR) (pp. 291–348). Cambridge University Press.

    Google Scholar 

  • Prashantha Kumar, K., & Busnur Rachotappa, M. (2023). Impacts of aerosol orographic precipitation interaction associated with Western disturbances over India using satellite observations. Water, 15(16), 2901.

    Article  Google Scholar 

  • Prospero, J. M., et al. (1983). The atmospheric aerosol system – An overview. Reviews of Geophysics and Space Physics, 21, 1607–1629.

    Article  CAS  Google Scholar 

  • Pruppacher, H. R., & Klett, J. D. (1997). Microphysics of clouds and precipitation (Vol. 954, p. 1997). Reidel.

    Google Scholar 

  • Raes, F., Bates, T., McGovern, F., & Van Liedekerke, M. (2000). The 2nd aerosol characterization experiment (ACE-2): General overview and main results. Tellus B, 52(2), 111–125.

    Article  Google Scholar 

  • Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T., Washington, W. M., Fu, Q., Sikka, D. R., & Wild, M. (2005). Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proceedings of the National Academy of Sciences of the United States of America, 102, 5326–5333.

    Article  CAS  Google Scholar 

  • Ranjan, R. R., Joshi, H. P., & Iyer, K. N. (2007). Spectral variation of total column aerosol optical depth over Rajkot: A tropical semi-arid Indian station. Aerosol Air Quality Research, 7(1), 33–45.

    Article  Google Scholar 

  • Rao, G. S. P., Murty, M. K., & Joshi, U. R. (2005). Climate change over India as revealed by critical extreme temperature analysis. Mausam, 56, 601–608.

    Article  Google Scholar 

  • Rosenfeld, D. (2000). Suppression of rain and snow by urban and industrial air pollution. Science, 287(5459), 1793–1796.

    Article  CAS  Google Scholar 

  • Rosenfeld, D., Rudich, Y., & Lahav, R. (2001). Desert dust suppressing precipitation: A possible desertification feedback loop. Proceedings of the National Academy of Sciences of the United States of America, 98, 5975–5980.

    Article  CAS  Google Scholar 

  • Rueckerl, R., Schneider, A., Breitner, S., Cyrys, J., & Peters, A. (2011). Inhalation Toxicology, 23, 555–592.

    Article  CAS  Google Scholar 

  • Russell, P. B., & Heintzenberg, J. (2000). An overview of the ACE-2 clear sky column closure experiment (CLEARCOLUMN). Tellus B, 52, 463–483.

    Article  Google Scholar 

  • Satheesh, S. K., & Moorthy, K. K. (2005). Radiative effects of natural aerosols: A review. Atmospheric Environment, 39(11), 2089–2110.

    Article  CAS  Google Scholar 

  • Satheesh, S. K., & Ramanathan, V. (2000). Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surface. Nature, 405, 60–63.

    Article  CAS  Google Scholar 

  • Satheesh, S. K., & Srinivasan, J. (2002). Enhanced aerosol loading over Arabian Sea during pre-monsoon season: Natural or anthropogenic? Geophysical Research Letters, 29(18), 1–4.

    Article  Google Scholar 

  • Schwartz, S. E., et al. (1995). Group report: Connections between aerosol properties and forcing of climate. In R. J. Charlson & J. Heintzenberg (Eds.), Aerosol forcing of climate (pp. 251–280). Wiley.

    Google Scholar 

  • Shepherd, J. M., Pierce, H. F., & Negri, A. J. (2002). Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. Journal of Applied Meteorology, 41, 689–701.

    Article  Google Scholar 

  • Sunny, K., Panda, J., Rao, P., Sarangi, C., & Ghude, S. D. (2021). Study of aerosol-cloud-precipitation-meteorology interaction during a distinct weather event over the Indian region using WRF-Chem. Atmospheric Research, 247, 105–144.

    Google Scholar 

  • Tsai, J. H., Huang, K. L., Lin, N. H., Chen, S. J., Lin, T. C., Chen, S. C., Lin, C. C., Hsu, S. C., & Lin, W. Y. (2012). Influence of an Asian dust storm and southeast Asian biomass burning on the characteristics of seashore atmospheric aerosols in southern Taiwan. Aerosol and Air Quality Research, 12, 1105–1115.

    Article  CAS  Google Scholar 

  • Twomey, S. (1974). Pollution and the planetary albedo. Atmospheric Environment, 8, 1251–1256.

    Article  Google Scholar 

  • Tyson, P. D., Garstang, M., Swap, R., Kallberg, P., & Edwards, N. (1996). An air transport climatology for subtropical southern Africa. International Journal of Climatology, 16, 256–291.

    Article  Google Scholar 

  • Uematsu, M., Duce, R. A., Prospero, J. M., Chen, L., Merill, J. T., & McDonald, R. L. (1983). Transport of mineral aerosol from Asia over the North Pacific Ocean. Journal of Geophysical Research, 88, 5343–5352.

    Article  CAS  Google Scholar 

  • Vijayakumar, K., Devara, P., & Simha, C. (2012). Aerosol features during drought and Normal monsoon years: A study undertaken with multi-platform measurements over a tropical urban site. Aerosol and Air Quality Research, 12, 1444–1458.

    Article  Google Scholar 

  • Wilson, C. T. R. (1987). Condensation of water vapour in the presence of dust-free air and other gases. Philosophical Transactions of the Royal Society of London A, 189, 265–307.

    Google Scholar 

  • Zhong, S., Qian, Y., Zhao, C., Leung, R., Wang, H., Yang, B., Fan, J., et al. (2017). Urbanization-induced urban heat Island and aerosol effects on climate extremes in the Yangtze River Delta Region of China. Atmospheric Chemistry and Physics, 17(8), 5439–5457.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikkath, S.N., Selvi, S.T. (2024). Anthropogenic Influence on Aerosol Optical Depth. In: Gautam, S., Kumar, R.P., Samuel, C. (eds) Aerosol Optical Depth and Precipitation. Springer, Cham. https://doi.org/10.1007/978-3-031-55836-8_15

Download citation

Publish with us

Policies and ethics