Skip to main content

Plastic Waste and Its Eco-Friendly Management

  • Chapter
  • First Online:
Advanced Strategies for Biodegradation of Plastic Polymers

Abstract

The impact of plastic waste on the environment is significant. Plastic waste can take hundreds of years to decompose, and it can cause harm to wildlife, marine ecosystems, and human health. From the Mariana Trench to Mt. Everest, there is virtually no place on Earth which is left untouched by plastic pollution. Plastic waste is now so ubiquitous in the natural environment that scientists have even suggested it could serve as a geological indicator of the Anthropocene era. The world is facing a global plastics crisis, and addressing the end of life of plastic products will not be enough to solve this global crisis. Plastic waste is a complex issue that requires a multifaceted approach. Governments, municipalities, businesses, and individuals all have a role to play in reducing plastic waste and managing it in an eco-friendly manner. The current trends and future perspectives of plastic waste management involve circular economy, 3R perspective, and innovative technologies. These approaches can help reduce the burden of plastic waste on the environment and pave the way for a more sustainable future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Gawad, N. M. K., El Dein, A. Z., Mansour, D. A., Ahmed, H. M., Darwish, M. M. F., & Lehtonen, M. (2019). Development of industrial scale PVC nanocomposites with comprehensive enhancement in dielectric properties. IET Science, Measurement & Technology, 13(1), 90–96.

    Article  Google Scholar 

  • Abdulla, N. A. (2017). Concrete filled PVC tube: A review. Construction and Building Materials, 156, 321–329.

    Article  CAS  Google Scholar 

  • Abrha, H., Cabrera, J., Dai, Y., Irfan, M., Toma, A., Jiao, S., & Liu, X. (2022). Bio-based plastics production, impact and end of life: A literature review and content analysis. Sustainability, 14(8), 4855.

    Article  CAS  Google Scholar 

  • Ahmadian Hoseini, A. H., Erfanian, E., Kamkar, M., Sundararaj, U., Liu, J., & Arjmand, M. (2021). Waste to value-added product: Developing electrically conductive nanocomposites using a non-recyclable plastic waste containing vulcanized rubber. Polymers, 13(15), 2427.

    Article  CAS  Google Scholar 

  • Ali, S. S., Elsamahy, T., Al-Tohamy, R., Zhu, D., Mahmoud, Y. A.-G., Koutra, E., Metwally, M. A., Kornaros, M., & Sun, J. (2021). Plastic wastes biodegradation: Mechanisms, challenges and future prospects. Science of the Total Environment, 780(146), 590.

    Google Scholar 

  • Amobonye, A., Bhagwat, P., Singh, S., & Pillai, S. (2021). Plastic biodegradation: Frontline microbes and their enzymes. Science of the Total Environment, 759(143), 536.

    Google Scholar 

  • Andrady, A. L., Barnes, P. W., Bornman, J. F., Gouin, T., Madronich, S., White, C. C., Zepp, R. G., & Jansen, M. A. K. (2022). Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation. Science of The Total Environment, 851(158), 022.

    Google Scholar 

  • Antolinc, D., & Filipič, K. E. (2021). Recycling of nonwoven polyethylene terephthalate textile into thermal and acoustic insulation for more sustainable buildings. Polymers, 13(18), 3090.

    Article  CAS  Google Scholar 

  • Asiandu, A. P., Wahyudi, A., & Sari, S. W. (2021). A review: Plastics waste biodegradation using plastics-degrading bacteria. Journal of Environmental Treatment Techniques, 9(1), 148–157.

    Google Scholar 

  • Avio, C. G., Gorbi, S., & Regoli, F. (2017). Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Marine Environmental Research, 128, 2–11.

    Article  CAS  Google Scholar 

  • Bahl, S., Dolma, J., Singh, J. J., & Sehgal, S. (2021). Biodegradation of plastics: A state of the art review. Materials Today: Proceedings, 39, 31–34.

    CAS  Google Scholar 

  • Baldera-Moreno, Y., Rojas-Palma, A., Andler, R., & Cuesta-Herrera, L. (2023). Mathematical model of polylactic acid biodegradation under controlled composting conditions. Journal of Physics: Conference Series, 2515(1), 12,004.

    Google Scholar 

  • Benyathiar, P., Kumar, P., Carpenter, G., Brace, J., & Mishra, D. K. (2022). Polyethylene terephthalate (PET) bottle-to-bottle recycling for the beverage industry: A review. Polymers, 14(12), 2366.

    Article  CAS  Google Scholar 

  • Bonhomme, S., Cuer, A., Delort, A. M., Lemaire, J., Sancelme, M., & Scott, G. (2003). Environmental biodegradation of polyethylene. Polymer Degradation and Stability, 81(3), 441–452.

    Article  CAS  Google Scholar 

  • Cai, S., Zhang, B., & Cremaschi, L. (2017). Review of moisture behavior and thermal performance of polystyrene insulation in building applications. Building and Environment, 123, 50–65.

    Article  Google Scholar 

  • Calderón, S., Centella, M., Lozano, L., Sustaita, A., Collado, E., & Sáez, Y. (2022). Thermal-structural analysis of polymers for the manufacture of cases for outdoor pollutants monitoring devices. In 2022 eighth International Engineering, Sciences and Technology Conference (IESTEC) (pp. 707–714).

    Chapter  Google Scholar 

  • Calignano, F., Lorusso, M., Roppolo, I., & Minetola, P. (2020). Investigation of the mechanical properties of a carbon fibre-reinforced nylon filament for 3D printing. Machines, 8(3), 52.

    Article  Google Scholar 

  • Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8(9), 3494–3511.

    Article  CAS  Google Scholar 

  • Chan, S. S., Khoo, K. S., Chew, K. W., Ling, T. C., & Show, P. L. (2022). Recent advances biodegradation and biosorption of organic compounds from wastewater: Microalgae-bacteria consortium-A review. Bioresource Technology, 344(126), 159.

    Google Scholar 

  • Chia, W. Y., Tang, D. Y. Y., Khoo, K. S., Lup, A. N. K., & Chew, K. W. (2020). Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology, 4(100), 065.

    Google Scholar 

  • Dabees, S., Tirth, V., Mohamed, A., & Kamel, B. M. (2021). Wear performance and mechanical properties of MWCNT/HDPE nanocomposites for gearing applications. Journal of Materials Research and Technology, 12, 2476–2488.

    Article  CAS  Google Scholar 

  • Darie-Niță, R. N., Râpă, M., & Frąckowiak, S. (2022). Special features of polyester-based materials for medical applications. Polymers, 14(5), 951.

    Article  Google Scholar 

  • Das, A., & Mahanwar, P. (2020). A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research, 3(3), 93–101.

    Article  Google Scholar 

  • Dhaka, V., Singh, S., Anil, A. G., Sunil Kumar Naik, T. S., Garg, S., Samuel, J., Kumar, M., Ramamurthy, P. C., & Singh, J. (2022). Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. Environmental Chemistry Letters, 91, 1–24.

    Google Scholar 

  • Dong, W., & Gijsman, P. (2010). Influence of temperature on the thermo-oxidative degradation of polyamide 6 films. Polymer Degradation and Stability, 95(6), 1054–1062.

    Article  CAS  Google Scholar 

  • Dorigato, A. (2021). Recycling of polymer blends. Advanced Industrial and Engineering Polymer Research, 4(2), 53–69.

    Article  CAS  Google Scholar 

  • dos Anjos, E. G. R., Backes, E. H., Marini, J., Pessan, L. A., Montagna, L. S., & Passador, F. R. (2019). Effect of LLDPE-g-MA on the rheological, thermal, mechanical properties and morphological characteristic of PA6/LLDPE blends. Journal of Polymer Research, 26, 1–10.

    Google Scholar 

  • Er, C. T. X., Sen, L. Z., Srinophakun, P., & Wei, O. C. (2023). Recent advances and challenges in sustainable management of plastic waste using biodegradation approach. Bioresource Technology, 128, 772.

    Google Scholar 

  • Fa, W., Wang, J., Ge, S., & Chao, C. (2020). Performance of photo-degradation and thermo-degradation of polyethylene with photo-catalysts and thermo-oxidant additives. Polymer Bulletin, 77, 1417–1432.

    Article  CAS  Google Scholar 

  • Falua, K. J., Pokharel, A., Babaei-Ghazvini, A., Ai, Y., & Acharya, B. (2022). Valorization of starch to biobased materials: A review. Polymers, 14(11), 2215.

    Article  CAS  Google Scholar 

  • Gama, N. V., Ferreira, A., & Barros-Timmons, A. (2018). Polyurethane foams: Past, present, and future. Materials, 11(10), 1841.

    Article  Google Scholar 

  • Gama, N., Evtyugin, D. D., Lourenço, A., Lopes, C., & Evtuguin, D. V. (2023). Ellagic acid as stabilizer in the thermo-oxidative degradation of thermoplastic polyurethane. Polymer Degradation and Stability, 110, 456.

    Google Scholar 

  • Gao, R., Liu, R., & Sun, C. (2021). A marine fungus efficiently degrades polyethylene. BioRxiv, 2011–2021.

    Google Scholar 

  • Gebrekrstos, A., & Ray, S. S. (2023). Superior electrical conductivity and mechanical properties of phase-separated polymer blend composites by tuning the localization of nanoparticles for electromagnetic interference shielding applications. Journal of Polymer Science, 61, 2567–2584.

    Google Scholar 

  • Gensler, R., Plummer, C. J. G., Kausch, H.-H., Kramer, E., Pauquet, J.-R., & Zweifel, H. (2000). Thermo-oxidative degradation of isotactic polypropylene at high temperatures: Phenolic antioxidants versus HAS. Polymer Degradation and Stability, 67(2), 195–208.

    Article  CAS  Google Scholar 

  • Geyer, R. (2020a). A brief history of plastics. In Mare Plasticum-the plastic sea: Combatting plastic pollution through science and art (pp. 31–47).

    Chapter  Google Scholar 

  • Geyer, R. (2020b). Production, use, and fate of synthetic polymers. In Plastic waste and recycling (pp. 13–32). Elsevier.

    Chapter  Google Scholar 

  • Ge-Zhang, S., Liu, H., Song, M., Wang, Y., Yang, H., Fan, H., Ding, Y., & Mu, L. (2022). Advances in polyethylene terephthalate beverage bottle optimization: A mini review. Polymers, 14(16), 3364.

    Article  CAS  Google Scholar 

  • Gijsman, P. (2008). Review on the thermo-oxidative degradation of polymers during processing and in service. E-Polymers, 8(1), 65.

    Article  Google Scholar 

  • Gijsman, P., & Fiorio, R. (2023). Long term thermo-oxidative degradation and stabilization of polypropylene (PP) and the implications for its recyclability. Polymer Degradation and Stability, 110, 260.

    Google Scholar 

  • Gounni, A., Mabrouk, M. T., El Wazna, M., Kheiri, A., El Alami, M., El Bouari, A., & Cherkaoui, O. (2019). Thermal and economic evaluation of new insulation materials for building envelope based on textile waste. Applied Thermal Engineering, 149, 475–483.

    Article  Google Scholar 

  • Groenewolt, M. (2019). Polyurethane coatings: a perfect product class for the design of modern automotive clearcoats. Polymer International, 68(5), 843–847.

    Article  CAS  Google Scholar 

  • Hacker, M. C., Krieghoff, J., & Mikos, A. G. (2019). Synthetic polymers. In Principles of regenerative medicine (pp. 559–590). Elsevier.

    Chapter  Google Scholar 

  • Hari, S. (2019). Review on effect of fungi on plastic degradation. JRAR, 6(1), 261–265.

    Google Scholar 

  • Ho, B. T., Roberts, T. K., & Lucas, S. (2018). An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach. Critical Reviews in Biotechnology, 38(2), 308–320.

    Article  CAS  Google Scholar 

  • Huang, Y., Tang, Z., Liu, Z., Wei, J., Hu, H., & Zhi, C. (2018). Toward enhancing wearability and fashion of wearable supercapacitor with modified polyurethane artificial leather electrolyte. Nano-Micro Letters, 10, 1–8.

    Article  CAS  Google Scholar 

  • Huang, S., Wang, H., Ahmad, W., Ahmad, A., Ivanovich Vatin, N., Mohamed, A. M., Deifalla, A. F., & Mehmood, I. (2022). Plastic waste management strategies and their environmental aspects: A scientometric analysis and comprehensive review. International Journal of Environmental Research and Public Health, 19(8), 4556.

    Article  CAS  Google Scholar 

  • Jaffe, M., Easts, A. J., & Feng, X. (2020). Polyester fibers. In Thermal analysis of textiles and fibers (pp. 133–149). Elsevier.

    Chapter  Google Scholar 

  • Juliana, S., Parhusip, M., Simanullang, A., Tita, E., & Irawati, W. (2022). Potential of Ideonella sakaiensis bacteria in degrading plastic waste type polyethylene terephthalate. Jurnal Biologi Tropis, 22(2), 381–389.

    Article  Google Scholar 

  • Kabaivanova, L., Petrova, P., Hubenov, V., & Simeonov, I. (2022). Biogas production potential of thermophilic anaerobic biodegradation of organic waste by a microbial consortium identified with metagenomics. Life, 12(5), 702.

    Article  CAS  Google Scholar 

  • Kan, M., & Miller, S. A. (2022). Environmental impacts of plastic packaging of food products. Resources, Conservation and Recycling, 180(106), 156.

    Google Scholar 

  • Karalija, E., Carbó, M., Coppi, A., Colzi, I., Dainelli, M., Gašparović, M., Grebenc, T., Gonnelli, C., Papadakis, V., & Pilić, S. (2022). Interplay of plastic pollution with algae and plants: Hidden danger or a blessing? Journal of Hazardous Materials, 438(129), 450.

    Google Scholar 

  • Kawashima, N., Yagi, T., & Kojima, K. (2019). How do bioplastics and fossil-based plastics play in a circular economy? Macromolecular Materials and Engineering, 304(9), 1,900,383.

    Article  Google Scholar 

  • Kehinde, O., Ramonu, O. J., Babaremu, K. O., & Justin, L. D. (2020). Plastic wastes: Environmental hazard and instrument for wealth creation in Nigeria. Heliyon, 6(10), e05131.

    Article  CAS  Google Scholar 

  • Khalid, M. Y., Arif, Z. U., Ahmed, W., & Arshad, H. (2022). Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials. Sustainable Materials and Technologies, 31, e00382.

    Article  CAS  Google Scholar 

  • Khruengsai, S., Sripahco, T., & Pripdeevech, P. (2021). Low-density polyethylene film biodegradation potential by fungal species from Thailand. Journal of Fungi, 7(8), 594.

    Article  CAS  Google Scholar 

  • Kibria, M. G., Masuk, N. I., Safayet, R., Nguyen, H. Q., & Mourshed, M. (2023). Plastic waste: Challenges and opportunities to mitigate pollution and effective management. International Journal of Environmental Research, 17(1), 20. https://doi.org/10.1007/s41742-023-00507-z

    Article  CAS  Google Scholar 

  • Kliopova, I., Staniškis, J. K., Stunžėnas, E., & Jurovickaja, E. (2019). Bio-nutrient recycling with a novel integrated biodegradable waste management system for catering companies. Journal of Cleaner Production, 209, 116–125.

    Article  CAS  Google Scholar 

  • Kosloski-Oh, S. C., Wood, Z. A., Manjarrez, Y., de Los Rios, J. P., & Fieser, M. E. (2021). Catalytic methods for chemical recycling or upcycling of commercial polymers. Materials Horizons, 8(4), 1084–1129.

    Article  CAS  Google Scholar 

  • Kotilainen, T., Aphalo, P. J., Brelsford, C. C., Böök, H., Devraj, S., Heikkilä, A., Hernández, R., Kylling, A., Lindfors, A. V., & Robson, T. M. (2020). Patterns in the spectral composition of sunlight and biologically meaningful spectral photon ratios as affected by atmospheric factors. Agricultural and Forest Meteorology, 291(108), 041.

    Google Scholar 

  • Kumar, R., Verma, A., Shome, A., Sinha, R., Sinha, S., Jha, P. K., Kumar, R., Kumar, P., & Shubham, & Das, S. (2021). Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability, 13(17), 9963.

    Article  CAS  Google Scholar 

  • Lay, M., Thajudin, N. L. N., Hamid, Z. A. A., Rusli, A., Abdullah, M. K., & Shuib, R. K. (2019). Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Composites Part B: Engineering, 176(107), 341.

    Google Scholar 

  • Lerman, M. J., Lembong, J., Muramoto, S., Gillen, G., & Fisher, J. P. (2018). The evolution of polystyrene as a cell culture material. Tissue Engineering Part B: Reviews, 24(5), 359–372.

    Article  CAS  Google Scholar 

  • Li, D., Zhou, L., Wang, X., He, L., & Yang, X. (2019a). Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property. Materials, 12(11), 1746.

    Article  CAS  Google Scholar 

  • Li, S., Yang, P., Liu, X., Zhang, J., Xie, W., Wang, C., Liu, C., & Guo, Z. (2019b). Graphene oxide based dopamine mussel-like cross-linked polyethylene imine nanocomposite coating with enhanced hexavalent uranium adsorption. Journal of Materials Chemistry A, 7(28), 16,902–16,911.

    Article  CAS  Google Scholar 

  • Ling, M., Ma, D., Hu, X., Liu, Z., Wang, D., & Feng, Q. (2022). Hydrothermal treatment of polyvinyl chloride: Reactors, dechlorination chemistry, application, and challenges. Chemosphere, 137, 718.

    Google Scholar 

  • Liu, R., & Mabury, S. A. (2020). Synthetic phenolic antioxidants: A review of environmental occurrence, fate, human exposure, and toxicity. Environmental Science & Technology, 54(19), 11,706–11,719.

    Article  CAS  Google Scholar 

  • Liu, T., Xin, Y., Liu, X., Wu, B., & Xiang, M. (2021). Advances in microbial degradation of plastics. Sheng Wu Gong Cheng Xue Bao = Chinese Journal of Biotechnology, 37(8), 2688–2702.

    CAS  Google Scholar 

  • Liu, L., Xu, M., Ye, Y., & Zhang, B. (2022). On the degradation of (micro) plastics: Degradation methods, influencing factors, environmental impacts. Science of the Total Environment, 806(151), 312.

    Google Scholar 

  • Liwarska-Bizukojc, E. (2022). Phytotoxicity assessment of biodegradable and non-biodegradable plastics using seed germination and early growth tests. Chemosphere, 289(133), 132.

    Google Scholar 

  • Magalhães, R. P., Cunha, J. M., & Sousa, S. F. (2021). Perspectives on the role of enzymatic biocatalysis for the degradation of plastic PET. International Journal of Molecular Sciences, 22(20), 11,257.

    Article  Google Scholar 

  • Maitlo, G., Ali, I., Maitlo, H. A., Ali, S., Unar, I. N., Ahmad, M. B., Bhutto, D. K., Karmani, R. K., Naich, S., & ur R., & Sajjad, R. U. (2022). Plastic waste recycling, applications, and future prospects for a sustainable environment. Sustainability, 14(18), 11,637.

    Article  Google Scholar 

  • Makris, K. F., Langeveld, J., & Clemens, F. H. L. R. (2020). A review on the durability of PVC sewer pipes: Research vs. practice. Structure and Infrastructure Engineering, 16(6), 880–897.

    Article  Google Scholar 

  • Memon, H., Yasin, S., Khoso, N. A., & Memon, S. (2016). Study of wrinkle resistant, breathable, anti-UV nanocoated woven polyester fabric. Surface Review and Letters, 23(03), 1,650,003.

    Article  Google Scholar 

  • Moshood, T. D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M. H., & AbdulGhani, A. (2022). Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Current Research in Green and Sustainable Chemistry, 100, 273.

    Google Scholar 

  • Mujtaba, M., Fraceto, L., Fazeli, M., Mukherjee, S., Savassa, S. M., de Medeiros, G. A., Santo Pereira, A., & do E., Mancini, S. D., Lipponen, J., & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 136, 815.

    Google Scholar 

  • Muthuraj, R., Misra, M., & Mohanty, A. K. (2018). Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 135(24), 45,726.

    Article  Google Scholar 

  • Nabi, I., Zaheer, M., Jin, W., & Yang, L. (2023). Biodegradation of macro-and micro-plastics in environment: A review on mechanism, toxicity, and future perspectives. Science of The Total Environment, 858(160), 108.

    Google Scholar 

  • Nielsen, T. D., Hasselbalch, J., Holmberg, K., & Stripple, J. (2020). Politics and the plastic crisis: A review throughout the plastic life cycle. Wiley Interdisciplinary Reviews: Energy and Environment, 9(1), e360.

    Article  CAS  Google Scholar 

  • OECD. (2022). Plastic pollution is growing relentlessly as waste management and recycling fall short, says OECD. Newsroom.

    Google Scholar 

  • Pandey, P., Dhiman, M., Kansal, A., & Subudhi, S. P. (2023). Plastic waste management for sustainable environment: Techniques and approaches. Waste Disposal & Sustainable Energy, 5, 205–222.

    Google Scholar 

  • Priya, A. K., Jalil, A. A., Dutta, K., Rajendran, S., Vasseghian, Y., Karimi-Maleh, H., & Soto-Moscoso, M. (2022). Algal degradation of microplastic from the environment: Mechanism, challenges, and future prospects. Algal Research, 102, 848.

    Google Scholar 

  • Qin, Z., Mou, J., Chao, C. Y. H., Chopra, S. S., Daoud, W., Leu, S., Ning, Z., Tso, C. Y., Chan, C. K., & Tang, S. (2021). Biotechnology of plastic waste degradation, recycling, and valorization: Current advances and future perspectives. ChemSusChem, 14(19), 4103–4114.

    Article  CAS  Google Scholar 

  • Quecholac-Piña, X., García-Rivera, M. A., Espinosa-Valdemar, R. M., Vázquez-Morillas, A., Beltrán-Villavicencio, M., de la Cisneros-Ramos, A., & L. (2017). Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation. Environmental Science and Pollution Research, 24, 25,725–25,730.

    Article  Google Scholar 

  • Raheem, A. B., Noor, Z. Z., Hassan, A., Abd Hamid, M. K., Samsudin, S. A., & Sabeen, A. H. (2019). Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. Journal of Cleaner Production, 225, 1052–1064.

    Article  CAS  Google Scholar 

  • Raj, T., Chandrasekhar, K., Kumar, A. N., & Kim, S.-H. (2022). Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach. Renewable and Sustainable Energy Reviews, 158(112), 130.

    Google Scholar 

  • Rambabu, K., Bharath, G., Govarthanan, M., Kumar, P. S., Show, P. L., & Banat, F. (2023). Bioprocessing of plastics for sustainable environment: Progress, challenges, and prospects. TrAC Trends in Analytical Chemistry, 117, 189.

    Google Scholar 

  • Ramli Sulong, N. H., Mustapa, S. A. S., & Abdul Rashid, M. K. (2019). Application of expanded polystyrene (EPS) in buildings and constructions: A review. Journal of Applied Polymer Science, 136(20), 47,529.

    Article  Google Scholar 

  • Rong, L., Zhao, L., Zhao, L., Cheng, Z., Yao, Y., Yuan, C., Wang, L., & Sun, H. (2021). LDPE microplastics affect soil microbial communities and nitrogen cycling. Science of the Total Environment, 773(145), 640.

    Google Scholar 

  • Rudel, R. A., Camann, D. E., Spengler, J. D., Korn, L. R., & Brody, J. G. (2003). Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environmental Science & Technology, 37(20), 4543–4553.

    Article  CAS  Google Scholar 

  • Sebastian, A., Paul, A. M., Dominic, D., Shaji, M., Jose, P., Sasi, S., & Prasad, M. N. V. (2023). Microbial degradation of plastics. In Microplastics in the Ecosphere: Air, Water, Soil, and Food (pp. 305–320).

    Chapter  Google Scholar 

  • Shakiba, M., Rezvani Ghomi, E., Khosravi, F., Jouybar, S., Bigham, A., Zare, M., Abdouss, M., Moaref, R., & Ramakrishna, S. (2021). Nylon – A material introduction and overview for biomedical applications. Polymers for Advanced Technologies, 32(9), 3368–3383.

    Article  CAS  Google Scholar 

  • Simon, G. P. (2019). Polymer blends and alloys. Routledge.

    Google Scholar 

  • Singh, D. P. (2021). Biodegradation of plastic using micro-organisms. International Journal of Environmental Chemistry, 7(2), 1–6.

    CAS  Google Scholar 

  • Singh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L., & Fraternali, F. (2017). Recycling of plastic solid waste: A state of art review and future applications. Composites Part B: Engineering, 115, 409–422.

    Article  CAS  Google Scholar 

  • Srikanth, M., Sandeep, T., Sucharitha, K., & Godi, S. (2022). Biodegradation of plastic polymers by fungi: a brief review. Bioresources and Bioprocessing, 9(1), 42.

    Article  Google Scholar 

  • Sun, X., Xie, M., Mai, L., & Zeng, E. Y. (2022). Biobased plastic: A plausible solution toward carbon neutrality in plastic industry? Journal of Hazardous Materials, 435(129), 037.

    Google Scholar 

  • Swati, P., Poornima, P., Ey, H., Manimita, S., Yadav, M., & Tiwari, A. (2015). Biodegradation of plastic using microorganisms with help of nanoparticles: A review. Advances in Applied Science Research, 6, 1–18.

    Google Scholar 

  • Tan, X., & Rodrigue, D. (2019). A review on porous polymeric membrane preparation. Part II: Production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene. Polymers, 11(8), 1310.

    Article  Google Scholar 

  • Temporiti, M. E. E., Nicola, L., Nielsen, E., & Tosi, S. (2022). Fungal enzymes involved in plastics biodegradation. Microorganisms, 10(6), 1180.

    Article  CAS  Google Scholar 

  • Tong, Y., Bohm, S., & Song, M. (2017). The capability of graphene on improving the electrical conductivity and anti-corrosion properties of Polyurethane coatings. Applied Surface Science, 424, 72–81.

    Article  CAS  Google Scholar 

  • Tonsi, G., Maesani, C., Alini, S., Ortenzi, M. A., & Pirola, C. (2023). Nylon recycling processes: a brief overview. Chemical Engineering Transactions, 100, 727–732.

    Google Scholar 

  • Ungprasoot, P., Muanruksa, P., Tanamool, V., Winterburn, J., & Kaewkannetra, P. (2021). Valorization of aquatic weed and agricultural residues for innovative biopolymer production and their biodegradation. Polymers, 13(17), 2838.

    Article  CAS  Google Scholar 

  • Varghese, M., & Grinstaff, M. W. (2022). Beyond nylon 6: polyamides via ring opening polymerization of designer lactam monomers for biomedical applications. Chemical Society Reviews, 51, 8258–8275.

    Google Scholar 

  • von Vacano, B., Mangold, H., Vandermeulen, G. W. M., Battagliarin, G., Hofmann, M., Bean, J., & Künkel, A. (2023). Sustainable design of structural and functional polymers for a circular economy. Angewandte Chemie International Edition, 62(12), e202210823.

    Article  Google Scholar 

  • Wahyuningtiyas, N. E., & Suryanto, H. (2017). Analysis of biodegradation of bioplastics made of cassava starch. Journal of Mechanical Engineering Science and Technology (JMEST), 1(1), 24–31.

    Article  Google Scholar 

  • Walker, S., & Rothman, R. (2020). Life cycle assessment of bio-based and fossil-based plastic: A review. Journal of Cleaner Production, 261(121), 158.

    Google Scholar 

  • Walter, A., Sopracolle, L., Mutschlechner, M., Spruck, M., & Griesbeck, C. (2022). Biodegradation of different PET variants from food containers by Ideonella sakaiensis. Archives of Microbiology, 204(12), 711.

    Article  CAS  Google Scholar 

  • Wang, Z., Zhu, C., Mo, J., Fu, P., Zhao, Y., Yin, S., Jiang, J., Pan, M., & Su, C. (2019). White-light emission from dual-way photon energy conversion in a dye-encapsulated metal–organic framework. Angewandte Chemie International Edition, 58(29), 9752–9757.

    Article  CAS  Google Scholar 

  • Winnacker, M. (2017). Polyamides and their functionalization: recent concepts for their applications as biomaterials. Biomaterials Science, 5(7), 1230–1235.

    Article  CAS  Google Scholar 

  • Wu, F., Misra, M., & Mohanty, A. K. (2021). Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Progress in Polymer Science, 117(101), 395.

    Google Scholar 

  • Xie, F., Zhang, T., Bryant, P., Kurusingal, V., Colwell, J. M., & Laycock, B. (2019). Degradation and stabilization of polyurethane elastomers. Progress in Polymer Science, 90, 211–268.

    Article  CAS  Google Scholar 

  • Yang, Y., Deng, H., & Fu, Q. (2020). Recent progress on PEDOT: PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Materials Chemistry Frontiers, 4(11), 3130–3152.

    Article  CAS  Google Scholar 

  • Yeganeh, F. M., SHAKERI, A. T. A., Rastegari, M. M., & Lahijani, O. (2020). Investigating abundance and characteristics of microplastics as emerging pollutants in sediments of Taleqan dam and upstream river in Alborz province.

    Google Scholar 

  • Yi, L., Zuo, L., Wei, C., Fu, H., Qu, X., Zheng, S., Xu, Z., Guo, Y., Li, H., & Zhu, D. (2020). Enhanced adsorption of bisphenol A, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-π and π-π electron-donor-acceptor (EDA) interactions. Science of The Total Environment, 719(137), 389.

    Google Scholar 

  • Yoon, J.-S., Chin, I.-J., Kim, M.-N., & Kim, C. (1996). Degradation of microbial polyesters: A theoretical prediction of molecular weight and polydispersity. Macromolecules, 29(9), 3303–3307.

    Article  CAS  Google Scholar 

  • Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196–1199.

    Article  CAS  Google Scholar 

  • Yuan, J., Ma, J., Sun, Y., Zhou, T., Zhao, Y., & Yu, F. (2020). Microbial degradation and other environmental aspects of microplastics/plastics. Science of the Total Environment, 715(136), 968.

    Google Scholar 

  • Zaaba, N. F., & Jaafar, M. (2020). A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polymer Engineering & Science, 60(9), 2061–2075.

    Article  CAS  Google Scholar 

  • Zhang, F., Zhao, Y., Wang, D., Yan, M., Zhang, J., Zhang, P., Ding, T., Chen, L., & Chen, C. (2021). Current technologies for plastic waste treatment: A review. Journal of Cleaner Production, 282(124), 523.

    Google Scholar 

  • Zhang, Z., Sarkar, D., Biswas, J. K., & Datta, R. (2022). Biodegradation of per-and polyfluoroalkyl substances (PFAS): A review. Bioresource Technology, 344(126), 223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Fernández, L.A., Medellín-Castillo, N.A. (2024). Plastic Waste and Its Eco-Friendly Management. In: Soni, R., Debbarma, P., Suyal, D.C., Goel, R. (eds) Advanced Strategies for Biodegradation of Plastic Polymers. Springer, Cham. https://doi.org/10.1007/978-3-031-55661-6_9

Download citation

Publish with us

Policies and ethics