Skip to main content

Guarding Polyominoes Under k-Hop Visibility

  • Conference paper
  • First Online:
LATIN 2024: Theoretical Informatics (LATIN 2024)

Abstract

We study the Art Gallery Problem under k-hop visibility in polyominoes. In this visibility model, two unit squares of a polyomino can see each other if and only if the shortest path between the respective vertices in the dual graph of the polyomino has length at most k.

In this paper, we show that the VC dimension of this problem is 3 in simple polyominoes, and 4 in polyominoes with holes. Furthermore, we provide a reduction from Planar Monotone 3Sat, thereby showing that the problem is \(\textsf{NP}\)-complete even in thin polyominoes (i.e., polyominoes that do not a contain a \(2\times 2\) block of cells). Complementarily, we present a linear-time 4-approximation algorithm for simple 2-thin polyominoes (which do not contain a \(3\times 3\) block of cells) for all \(k\in \mathbb {N}\).

Due to space constraints, all missing details can be found in the full version [15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrahamsen, M., Adamaszek, A., Miltzow, T.: The art gallery problem is \(\exists \mathbb{R} \)-complete. J. ACM 69(1), 4:1–4:70 (2022). https://doi.org/10.1145/3486220

  2. Abu-Affash, A.K., Carmi, P., Krasin, A.: A linear-time algorithm for minimum k-hop dominating set of a cactus graph. Discret. Appl. Math. 320, 488–499 (2022). https://doi.org/10.1016/j.dam.2022.06.006

    Article  MathSciNet  Google Scholar 

  3. Amis, A.D., Prakash, R., Huynh, D.T., Vuong, T.H.: Max-Min \(d\)-cluster formation in wireless ad hoc networks. In: Conference on Computer Communications, pp. 32–41 (2000). https://doi.org/10.1109/INFCOM.2000.832171

  4. Aronov, B., Donakonda, A., Ezra, E., Pinchasi, R.: On pseudo-disk hypergraphs. Comput. Geom. 92, 101687 (2021). https://doi.org/10.1016/j.comgeo.2020.101687

    Article  MathSciNet  Google Scholar 

  5. Basuchowdhuri, P., Majumder, S.: Finding influential nodes in social networks using minimum \(k\)-hop dominating set. In: International Conference on Applied Algorithms (ICAA), pp. 137–151 (2014). https://doi.org/10.1007/978-3-319-04126-1_12

  6. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput. Geom. Appl. 22(03), 187–205 (2012). https://doi.org/10.1142/S0218195912500045

    Article  MathSciNet  Google Scholar 

  7. Biedl, T.C., Irfan, M.T., Iwerks, J., Kim, J., Mitchell, J.S.B.: Guarding polyominoes. In: Symposium on Computational Geometry (SoCG), pp. 387–396 (2011). https://doi.org/10.1145/1998196.1998261

  8. Biedl, T.C., Mehrabi, S.: On \(r\)-guarding thin orthogonal polygons. In: International Symposium on Algorithms and Computation (ISAAC), pp. 17:1–17:13 (2016). https://doi.org/10.4230/LIPIcs.ISAAC.2016.17

  9. Biedl, T.C., Mehrabi, S.: On orthogonally guarding orthogonal polygons with bounded treewidth. Algorithmica 83(2), 641–666 (2021). https://doi.org/10.1007/s00453-020-00769-5

    Article  MathSciNet  Google Scholar 

  10. Borradaile, G., Le, H.: Optimal dynamic program for \(r\)-domination problems over tree decompositions. In: International Symposium on Parameterized and Exact Computation (IPEC), pp. 8:1–8:23 (2017). https://doi.org/10.4230/LIPIcs.IPEC.2016.8

  11. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14(4), 463–479 (1995). https://doi.org/10.1007/BF02570718

    Article  MathSciNet  Google Scholar 

  12. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Fixed-parameter algorithms for \((k, r)\)-center in planar graphs and map graphs. ACM Trans. Algorithms 1(1), 33–47 (2005). https://doi.org/10.1145/1077464.1077468

    Article  MathSciNet  Google Scholar 

  13. Filtser, A., Le, H.: Clan embeddings into trees, and low treewidth graphs. In: Symposium on Theory of Computing (STOC), pp. 342–355 (2021). https://doi.org/10.1145/3406325.3451043

  14. Filtser, A., Le, H.: Low treewidth embeddings of planar and minor-free metrics. In: Symposium on Foundations of Computer Science (FOCS), pp. 1081–1092 (2022). https://doi.org/10.1109/FOCS54457.2022.00105

  15. Filtser, O., Krohn, E., Nilsson, B.J., Rieck, C., Schmidt, C.: Guarding polyominoes under \(k\)-hop visibility (2023). https://arxiv.org/abs/2308.00334

  16. Fox-Epstein, E., Klein, P.N., Schild, A.: Embedding planar graphs into low-treewidth graphs with applications to efficient approximation schemes for metric problems. In: Symposium on Discrete Algorithms (SODA), pp. 1069–1088 (2019). https://doi.org/10.1137/1.9781611975482.66

  17. Gibson, M., Krohn, E., Wang, Q.: The VC-dimension of visibility on the boundary of a simple polygon. In: International Symposium on Algorithms and Computation (ISAAC), pp. 541–551 (2015). https://doi.org/10.1007/978-3-662-48971-0_46

  18. Gilbers, A., Klein, R.: A new upper bound for the VC-dimension of visibility regions. Comput. Geom. 47(1), 61–74 (2014). https://doi.org/10.1016/j.comgeo.2013.08.012

    Article  MathSciNet  Google Scholar 

  19. Haussler, D., Welzl, E.: \(\varepsilon \)-nets and simplex range queries. Discrete Comput. Geom. 2(2), 127–151 (1987). https://doi.org/10.1007/BF02187876

    Article  MathSciNet  Google Scholar 

  20. Iwamoto, C., Kume, T.: Computational complexity of the \(r\)-visibility guard set problem for polyominoes. In: Japanese Conference on Discrete and Computational Geometry and Graphs (JCDCGG), pp. 87–95 (2013). https://doi.org/10.1007/978-3-319-13287-7_8

  21. Katsikarelis, I., Lampis, M., Paschos, V.T.: Structural parameters, tight bounds, and approximation for \((k, r)\)-center. Discret. Appl. Math. 264, 90–117 (2019). https://doi.org/10.1016/j.dam.2018.11.002

    Article  MathSciNet  Google Scholar 

  22. Kundu, S., Majumder, S.: A linear time algorithm for optimal k-hop dominating set of a tree. Inf. Process. Lett. 116(2), 197–202 (2016). https://doi.org/10.1016/j.ipl.2015.07.014

    Article  MathSciNet  Google Scholar 

  23. Langetepe, E., Lehmann, S.: Exact VC-dimension for \({L}_1\)-visibility of points in simple polygons (2017). https://arxiv.org/abs/1705.01723

  24. Lee, D., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theory 32(2), 276–282 (1986). https://doi.org/10.1109/TIT.1986.1057165

    Article  MathSciNet  Google Scholar 

  25. Meir, A., Moon, J.W.: Relations between packing and covering numbers of a tree. Pac. J. Math. 61(1), 225–233 (1975). https://doi.org/10.2140/pjm.1975.61.225

    Article  MathSciNet  Google Scholar 

  26. O’Rourke, J., Supowit, K.: Some NP-hard polygon decomposition problems. IEEE Trans. Inf. Theory 29(2), 181–190 (1983). https://doi.org/10.1109/TIT.1983.1056648

    Article  MathSciNet  Google Scholar 

  27. Pinciu, V.: Guarding polyominoes, polycubes and polyhypercubes. Electron. Notes Discrete Math. 49, 159–166 (2015). https://doi.org/10.1016/j.endm.2015.06.024

    Article  Google Scholar 

  28. Tomás, A.P.: Guarding thin orthogonal polygons is hard. In: Gasieniec, L., Wolter, F. (eds.) FCT 2013. LNCS, vol. 8070, pp. 305–316. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40164-0_29

  29. Valtr, P.: Guarding galleries where no point sees a small area. Israel J. Math. 104(1), 1–16 (1998). https://doi.org/10.1007/BF02897056

    Article  MathSciNet  Google Scholar 

  30. Worman, C., Keil, J.M.: Polygon decomposition and the orthogonal art gallery problem. Int. J. Comput. Geom. Appl. 17(2), 105–138 (2007). https://doi.org/10.1142/S0218195907002264

    Article  MathSciNet  Google Scholar 

Download references

Funding

B. J. N. and C. S. are supported by grants 2021-03810 and 2018-04001 from the Swedish Research Council (Vetenskapsrådet). C. S. was supported by grant 2018-04101 from Sweden’s innovation agency VINNOVA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Filtser, O., Krohn, E., Nilsson, B.J., Rieck, C., Schmidt, C. (2024). Guarding Polyominoes Under k-Hop Visibility. In: Soto, J.A., Wiese, A. (eds) LATIN 2024: Theoretical Informatics. LATIN 2024. Lecture Notes in Computer Science, vol 14578. Springer, Cham. https://doi.org/10.1007/978-3-031-55598-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55598-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55597-8

  • Online ISBN: 978-3-031-55598-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics