Skip to main content

Processes in SoilGen

  • Chapter
  • First Online:
Modelling Soil Development Under Global Change

Part of the book series: SpringerBriefs in Earth System Sciences ((BRIEFSEARTHSYST))

  • 79 Accesses

Abstract

This chapter specifies the processes in SoilGen. The (re-)distribution of mass of elements, gas and water requires the simulation of various transport processes, and these are driven by variations at the soil boundary. The landscape context affects effective infiltration per unit area and is mimicked by slope, its exposition and the main wind direction. Clay transport is simulated. Various processes influencing element cycling are included: the organic and inorganic C-cycles, and the effect of the plant-driven nutrient pump. Processes affecting the solid phase are chemical precipitation and dissolution, weathering and neoformation of minerals and physical weathering. Soil production from bedrock is simulated as a combination of these processes. Plant-related processes are including the water cycle, root distribution and its growth and the nutrient pump effect. Mixing processes such as bioturbation and tillage are an additional form of mass redistribution. Methods to update the CEC, soil texture, bulk density and transport parameters after mass redistributions are described. Simple case studies are included to illustrate weathering and neoformation of soil minerals and soil production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagaard P, Helgeson HC (1982) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions: I theoretical considerations. Am J Sci 282(3):237–285

    Article  CAS  Google Scholar 

  • Addiscott TM, Wagenet RJ (1985) Concepts of solute leaching in soils: a review of modelling approaches. J Soil Sci 36:411–424

    Article  CAS  Google Scholar 

  • Andrén O, Kätterer T (1997) ICBM: the introductory carbon balance model for exploration of soil carbon balances. Ecol Appl 7(4):1226–1236

    Article  Google Scholar 

  • Brown LC, Foster GR (1987) Storm erosivity using idealized intensity distributions. Trans Am Soc Agric Eng 30:379–386

    Article  Google Scholar 

  • Brubaker SD, Holzhey CS, Brasher BR (1992) Estimating the water-dispersible clay content of soils. Soil Sci Soc Am 56:1227–1232

    Article  Google Scholar 

  • Campbell CA, Cameron DR, Nicholaichuk W, Davidson HR (1977) Effects of fertilizer N and soil moisture on growth, N content and moisture use by spring wheat. Can J Soil Sci 57:289–310

    Article  CAS  Google Scholar 

  • Davidson JM, Graetz DA, Rao PSC, Selim HM (1978) Simulations of nitrogen movement, transformation, and uptake in plant root zone. US Environ Protect Agency EPA-600/3–78–029. Office Res Develop, Athens, GA

    Google Scholar 

  • De Vries W, Posch M (2003) Derivation of cation exchange constants for sand, loess, clay and peat soils on the basis of field measurements in the Netherlands. Wageningen, Alterra Green World research, Alterra-report, p 701

    Google Scholar 

  • Erpul G, Gabriels D, Cornelis WM, Samray NH, Guzelordu, (2008) Sand detachment under rains with varying angle of incidence. CATENA 72:413–422. https://doi.org/10.1016/j.catena.2007.07.008

    Article  Google Scholar 

  • Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115

    Article  CAS  Google Scholar 

  • Finke PA (2012) Modeling the genesis of Luvisols as a function of topographic position in loess parent material. Quat Int 265:3–17. https://doi.org/10.1016/j.quaint.2011.10.016

    Article  Google Scholar 

  • Finke PA, Samouëlian A, Suarez-Bonnet M, Laroche B, Cornu S (2015) Assessing the usage potential of SoilGen2 to predict clay translocation under forest and agricultural land uses. Eur J Soil Sci 66(1):194–205. https://doi.org/10.1111/ejss.12190

    Article  Google Scholar 

  • Finke P, Opolot E, Balesdent J, Berhe AA et al (2019) Can SOC modelling be improved by accounting for pedogenesis? Geoderma 338:513–524. https://doi.org/10.1016/j.geoderma.2018.10.018

    Article  CAS  Google Scholar 

  • Foth HD, Ellis BG (1996) Soil fertility, 2nd edn. CRC Press, Lewis. 304 ISBN 1-56670-243-7

    Google Scholar 

  • García-Gamero V, Vanwalleghem T, Peña A, Román-Sánchez A, Finke PA (2022) Modelling the effect of catena position and hydrology on soil chemical weathering. Soil 8:319–335. https://doi.org/10.5194/soil-8-319-2022

    Article  CAS  Google Scholar 

  • Gobat J-M, Aragno M, Matthey W (1998) Le sol vivant. Presses polytechniques et universitaires Romandes, Lausanne

    Google Scholar 

  • Goddéris Y, François LM, Probst A, Schott J et al (2006) Modelling weathering processes at the catchment scale: The WITCH numerical model. Geochim Cosmochim Acta 70(5):1128–1147. https://doi.org/10.1016/jgca200511018

  • Goldberg S, Forster HS (1990) Flocculation of reference clays and arid-zone soil clays. Soil Sci Soc Am J 54:714–718

    Article  CAS  Google Scholar 

  • Gunnarsson I, Arnórsson S (2000) Amorphous silica solubility and the thermodynamic properties of H4SiO4° in the range of 0 ° to 350 °C at Psat. Geochim Cosmochim Acta 64(13):2295–2307. https://doi.org/10.1016/S0016-7037(99)00426-3

    Article  CAS  Google Scholar 

  • Hutson JL, Cass A (1987) A retentivity function for use in soil-water simulation models. J Soil Sci 38:105–113

    Article  Google Scholar 

  • Hutson JL (2003) LEACHM - A process-based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone Version 4. Research Series No R03–1, Dept of Crop and Soil Sciences, Cornell University, Ithaca, NY

    Google Scholar 

  • Jarvis NJ, Villholth KG, Ulén B (1999) Modelling particle mobilization and leaching in macroporous soil. Eur J Soil Sci 50:621–632

    Article  Google Scholar 

  • Jenkinson DS, Coleman K (1994) Calculating the annual input of organic matter to soil from measurements of total organic carbon and radiocarbon. Eur J Soil Sci 45:167–174

    Article  Google Scholar 

  • Kretschmar R, Barmettler K, Grolimund D, Yan Y-D, Borkovec M, Sticher H (1997) Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour Res 33:1129–1137

    Article  Google Scholar 

  • Lieth H (1972) Modelling the primary productivity of the world. UNESCO Nature and Resour VIII 2:5–10

    Google Scholar 

  • Lundin L-C (1989) Water and heat flows in frozen soils. Basic theory and operational modelling. Dissertation Uppsala University

    Google Scholar 

  • Lyles L, Disrud LA, Woodruff NP (1969) Effects of soil physical properties, rainfall characteristics and wind velocity on clod disintegration by simulated rainfall. Soil Sci Am Proc 33:302–306

    Article  Google Scholar 

  • Mauersberger F (2001) Modellrechnungen zum Einfluss des Aufprallwinkels der Regentropfen auf die Mobilisierung und den Transport von Bodenpartikeln. Diploma thesis Technical University Freiburg

    Google Scholar 

  • Maxwell JC (1873) In: A treatise on electricity and magnetism. vol 1, reprint, Dover, New York, Sect 314, pp 440.https://doi.org/10.1038/007478a0

  • Meurer KHE, Chenu C, Coucheney E, Herrmann AM et al (2020) Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter. Biogeosciences 17:5025–5042. https://doi.org/10.5194/bg-17-5025-2020

    Article  CAS  Google Scholar 

  • Minasny B, McBratney AB (2001) A rudimentary mechanistic model for soil production and landscape development II A two-dimensional model incorporating chemical weathering. Geoderma 103:161–179. https://doi.org/10.1016/S0016-7061(01)00075-1

    Article  CAS  Google Scholar 

  • Moldrup P, Olesen T, Schjönning P, Yamaguchi T, Rolston DE (2000) Predicting the gas diffusion coefficient in undisturbed soils from soil water characteristics. Soil Sci Soc Am J 64:94–100. https://doi.org/10.2136/sssaj2000.64194x

    Article  CAS  Google Scholar 

  • Naseri M, Iden SC, Durner W (2022) Effective hydraulic properties of 3D virtual stony soils identified by inverse modelling. Soil 8:99–112. https://doi.org/10.5194/soil-8-99-2022

    Article  Google Scholar 

  • Navrátil T (2003) Biogeochemistry of the IIA group elements in a forested catchment. Dissertation Charles University, Prague

    Google Scholar 

  • Nicholls PH, Walker A, Baker RJ (1982) Measurement and simulation of the movement and degradation of atrazine and metribuzin in a fallow soil. Pestic Sci 13:484–494

    Article  CAS  Google Scholar 

  • Ranathunga KN, Finke PA, Yin Q, Yu YY (2021) Calibrating SoilGen2 for interglacial soil evolution in the Chinese Loess Plateau considering soil parameters and the effect of dust addition rhythm. Quat Int. https://doi.org/10.1016/j.quaint.2021.08.019

    Article  Google Scholar 

  • Sallaba F, Lehsten D, Seaquist J, Sykes MT (2015) A rapid NPP meta-model for current and future climate and CO2-scenarios in Europe. Ecol Model 302:29–41. https://doi.org/10.1016/j.ecolmodel.2015.01.026

    Article  CAS  Google Scholar 

  • Salvador-Blanes S, Minasny B, McBratney AB (2007) Modelling long-term in situ soil profile evolution: application to the genesis of soil profiles containing stone layers. Eur J Soil Sci 58:1535–1548. https://doi.org/10.1111/j.1365-2389.2007.00961.x

    Article  CAS  Google Scholar 

  • Scheel T, Jansen B, Van Wijk AJ, Verstraten JM, Kalbitz K (2008) Stabilization of dissolved organic matter by aluminium: a toxic effect or stabilization through precipitation? Eur J Soil Sci 59:1122–1132. https://doi.org/10.1111/j.1365-2389.2008.01074.x

    Article  CAS  Google Scholar 

  • Schmidt J (1992) Modelling long-term soil loss and landform change. In: Abrahams AJ, Parsons AD (eds) Overland flow-hydraulics and erosion mechanics. University College London Press, London

    Google Scholar 

  • Singer AC, Jury W, Luepranchai E, Yahng C-S, Crowley DE (2001) Contribution of earthworms to PCB bioremediation. Soil Biol Biochem 33:765–776. https://doi.org/10.1016/S0038-0717(00)00224-8

    Article  CAS  Google Scholar 

  • Sommer R, Stöckle C (2010) Correspondence between the campbell and Van Genuchten soil-water-retention models. J Irrig Drain Eng 2010:559–562. https://doi.org/10.1061/(ASCE)IR.1943-4774.000020

    Article  Google Scholar 

  • Song LF, Elimech M (1993) Calculation of particle deposition rate under unfavorable particle-surface interactions. J Chem Soc Faraday Trans 89:3443–3452

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1970) Aquatic chemistry. Wiley-Interscience, New York, xv + 583 p. ISBN 978-1-118-59148-2

    Google Scholar 

  • Sverdrup H, Warfvinge P (1995) Estimating field weathering rates using laboratory kinetics. In: White A, Brantley S (eds) Weathering kinetics of silicate minerals. reviews in mineralogy. Min Soc of Am 31:485–542

    Google Scholar 

  • Swift LW Jr (1976) Algorithm for solar radiation on mountain slopes. Water Resources Res 12(1):108–112. https://doi.org/10.1029/WR012i001p00108

    Article  Google Scholar 

  • Takeshi S, Itabashi K, Hasegawa H, Kumazaki I, Wakamatsu M, Hiraiwa Y (1999) Weathering estimate of decomposed granite by particle distribution analysis (in Japanese). Proc Japan Soc Civil Eng 631:97–108

    Google Scholar 

  • Thompson K, Parkinson JA, Band SR (1997) A comparative study of leaf nutrient concentrations in regional herbaceous flora. New Phytol 136:679–689

    Article  CAS  Google Scholar 

  • Tillotson WR, Robbins CW, Wagenet RJ, Hanks RJ (1980) Soil water, solute, and plant growth simulation. Bulletin 502 Utah State Agr Exp Stn Logan, Utah

    Google Scholar 

  • Ullrich A, Volk M (2009) Application of the soil and water assessment tool (SWAT) to predict the impact of alternative management practices on water quality and quantity. Agric Water Manag 96(8):1207–1217. https://doi.org/10.1016/j.agwat.2009.03.010

    Article  Google Scholar 

  • Van Genuchten MTh (1980). A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Google Scholar 

  • Wierenga PJ, Nielsen DR, Hagan RM (1969) Thermal properties of a soil based upon field and laboratory measurements. Soil Sci Soc Am Proc 33:354–360

    Article  Google Scholar 

  • Wösten JHM, Lilly A, Nemes A, Le Bas C (1999) Development and use of a database of hydraulic properties of European soils. Geoderma 90:169–185

    Article  Google Scholar 

  • Wyszkowski M, Wyszkowska J, WÅ‚odkowska L (2006) Correlations between macroelements content of spring barley and the enzymatic activity of soil contaminated with copper, zinc, tin and barium. Electron J Polish Agricul Univers. https://www.ejpau.media.pl/volume9/issue2/art-02.html

  • Yu YY, Finke PA, Guo Z, Wu H (2013) Sensitivity analysis and calibration of a soil carbon model (SoilGen2) in two contrasting loess forest soils. Geosci Model Dev 6:29–44. https://www.geosci-model-dev.net/6/29/2013/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Finke .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Finke, P. (2024). Processes in SoilGen. In: Modelling Soil Development Under Global Change. SpringerBriefs in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-55583-1_5

Download citation

Publish with us

Policies and ethics