Skip to main content

A Brief History of Modelling Soil Development

  • Chapter
  • First Online:
Modelling Soil Development Under Global Change

Part of the book series: SpringerBriefs in Earth System Sciences ((BRIEFSEARTHSYST))

  • 79 Accesses

Abstract

Historical pathways are described that led to today’s soil- and soilscape development models. Distinction is made between functional models and mechanistic models. Functional models describe the result of soil development using the factors of soil formation. These models are widely applied in soil mapping. Mechanistic models describe the processes behind the soil development; the current ones are quantitative and are mainly applied to describe the effects of global change on soils and the critical zone. The object that is modelled may be either the pedon or the soilscape, with at present still marked differences in process coverage and inclusion of transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brimhall GH, Dietrich WE (1987) Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochim Cosmochim Acta 51:567–587

    Article  CAS  Google Scholar 

  • Cohen S, Willgoose G, Hancock G (2010) The mARM3D spatially distributed soil evolution model: three-dimensional model framework and analysis of hillslope and landform responses. J Geophys Res-Earth Surf 115. https://doi.org/10.1029/2009JF001536

  • Cohen S, Willgoose G, Svoray T, Hancock G, Sela S (2015) The effects of sediment transport, weathering, and aeolian mechanisms on soil evolution. J Geophys Res-Earth Surf 120:260–274. https://doi.org/10.1002/2014JF003186

    Article  Google Scholar 

  • De Vries W, Kros J, Van Der Salm C (1995) Modeling the impact of acid deposition and nutrient cycling on forest soils. Ecol Model 79(1–3):231–254

    Article  Google Scholar 

  • Dietrich WE, Reiss R, HSU M-K, Montgomery DR (1995) A process-based model for culluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes 9:383–400

    Google Scholar 

  • Dokuchaev VV (1886) Materials to the assessment of land of the Nizhny Novgorod province natural-historical part. In: Dokuchaev VV (ed) Report to the Nizhny Novgorod Provincial Zemstvo. Key aspects in the history of land evaluation of the European Russia with the classification of the Russian soils 1. St Petersburg, Tipografiya Ye Yevdokimova (in Russian)

    Google Scholar 

  • Finke PA, Hutson JL (2008) Modelling soil genesis in calcareous loss. Geoderma 145:462–479. https://doi.org/10.1016/j.geoderma.2008.01.017

    Article  CAS  Google Scholar 

  • Finke PA (2012) Modeling the genesis of Luvisols as a function of topographic position in loess parent material. Quat Int 265:3–17. https://doi.org/10.1016/j.quaint.2011.10.016

    Article  Google Scholar 

  • Finke PA, Vanwalleghem T, Opolot E, Poesen J, Deckers J (2013) Estimating the effect of tree uprooting on variation of soil horizon depth by confronting pedogenetic simulations to measurements in a Belgian loess area. J Geophys Res-Earth Surf 118:1–16. https://doi.org/10.1002/jgrf.20153

    Article  Google Scholar 

  • Finke PA, Jafari A, Zwertvaegher A, Thas O (2018) Quantifying the uncertainty of a model-reconstructed soilscape for archaeological land evaluation. Geoderma 320:74–81. https://doi.org/10.1016/j.geoderma.2018.01.032

    Article  Google Scholar 

  • Finke PA, Minasny B, Temme AJAM (2022) Modeling soil development in a landscape context. Encyclopedia of soils in the environment, 2nd edn. https://doi.org/10.1016/B978-0-12-822974-3.00005-7

  • Goddéris Y, François LM, Probst A, Schott J et al (2006) Modelling weathering processes at the catchment scale: the WITCH numerical model. Geochim Cosmochim Acta 70(5):1128–1147. https://doi.org/10.1016/jgca200511018

  • Hansen S, Jensen HE, Nielsen NE, Svendsen H (1991) Simulation of nitrogen dynamics and biomass production in winter-wheat using the Danish simulation-model DAISY. Fertilizer Res 27(2–3):245–259

    Article  CAS  Google Scholar 

  • Hilgard E (1906) Soils, their formation, properties, composition and relations to climate and plant growth in the humid and arid regions. MacMillan, New York-London

    Book  Google Scholar 

  • Hoosbeek MR, Bryant RB (1994) Developing and adapting soil process submodels for use in the pedodynamic Orthod model. In: Bryant RB, Arnold R (eds) Quantitative modeling of soil forming processes. SSSA Special Publication Madison, ASA, CSSA and SSSA, pp 111–128

    Google Scholar 

  • Humphreys GS, Wilkinson MT (2007) The soil production function: a brief history and its rediscovery. Geoderma 139(1–2):73–78. https://doi.org/10.1016/j.geoderma.2007.01.004

    Article  CAS  Google Scholar 

  • Jacques D, Šimůnek J, Mallants D, van Genuchten MT (2008) Modelling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil. Geoderma 145:449–461. https://doi.org/10.1016/j.geoderma.2008.01.009

    Article  CAS  Google Scholar 

  • Jenny H (1941) Factors of soil formation: a system of quantitative pedology. McGraw-Hill, New York

    Book  Google Scholar 

  • Jenny H (1961) Derivation of state factor equations of soils and ecosystems. Soil Sci Soc Am Proc 25:385–388

    Article  Google Scholar 

  • Kirkby MJ (1977) Soil development models as a component of slope models. Earth Surf Proc 2:203–230

    Article  CAS  Google Scholar 

  • Kirkby MJ (1985) A basis for soil profile modeling in a geomorphic context. J Soil Sci 36:97–121

    Article  CAS  Google Scholar 

  • Mayer KU, Frind EO, Blowes DW (2002) Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour Res 38(9):13–1–13–21. https://doi.org/10.1029/2001WR000862

  • McBratney AB, Mendonça Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52. https://doi.org/10.1016/S0016-7061(03)00223-4

    Article  Google Scholar 

  • Minasny B, McBratney AB (1999) A rudimentary mechanistic model for soil production and landscape development. Geoderma 90:3-21

    Google Scholar 

  • Minasny B, McBratney AB (2001) A rudimentary mechanistic model for soil formation and landscape development: II. A two dimensional model incorporating chemical weathering. Geoderma 103:161–179

    Google Scholar 

  • Minasny B, Finke P, Stockman U, Vanwalleghem T, McBratney A (2015) Resolving the integral connection between pedogenesis and landscape evolution. Earth-Science Reviews 150:102–120. https://doi.org/10.1016/j.earscirev.2015.07.004

  • Opolot E (2016) Modelling soil evolution to assess soil system behaviour under global change. Dissertation Ghent University

    Google Scholar 

  • Phillips JD (1993) Stability implications of the state factor model of soils as a nonlinear dynamical system. Geoderma 58(1–2):1–15

    Article  Google Scholar 

  • Rasmussen C, Southard RJ, Horwath WR (2005) Modeling energy inputs to predict pedogenic environments using regional environmental databases. Soil Sci Soc Am J 69:1266–1274. https://doi.org/10.2136/sssaj2003.0283

    Article  CAS  Google Scholar 

  • Runge ECA (1973) Soil development sequences and energy models. Soil Sci 115:183–193

    Article  Google Scholar 

  • Schoorl JM, Veldkamp A, Bouma J (2002) Modeling Water and Soil Redistribution in a Dynamic Landscape Context. Soil Sci.Soc Am J 66:1610–1619

    Google Scholar 

  • Temme AJAM, Vanwalleghem T (2015) LORICA—a new model for linking landscape and soil profile evolution: development and sensitivity analysis. Comput Geosci 90(B):131–143. https://doi.org/10.1016/j.cageo.2015.08.004

  • Van der Meij WM, Temme AJAM, Wallinga J, Sommer M (2020) Modeling soil and landscape evolution—the effect of rainfall and land-use change on soil and landscape patterns. Soil 6:337–358. https://doi.org/10.5194/soil-6-337-2020

    Article  CAS  Google Scholar 

  • Vanwalleghem T, Stockmann U, Minasny B, McBratney AB (2013) A quantitative model for integrating landscape evolution and soil formation. J Geophys Res-Earth Surf 118:1–17. https://doi.org/10.1029/2011JF002296

    Article  Google Scholar 

  • Wagenet RJ, Hutson JL (1986) Predicting the fate of nonvolatile pesticides in the unsaturated zone. J Environ Qual 15(4):315–322

    Article  Google Scholar 

  • Zwertvaegher A, Finke P, De Reu J, Vandenbohede A et al (2013a) Reconstructing palaeogroundwater levels in a geoarchaeological context, a case study in Flanders, Belgium. Geoarchaeology 28:170–189. https://doi.org/10.1002/gea.21435

    Article  Google Scholar 

  • Zwertvaegher A, Finke P, De Smedt P, Gelorini V et al (2013b) Spatio-temporal modeling of soil characteristics for soilscape reconstruction. Geoderma 207–208:166–179. https://doi.org/10.1016/j.geoderma.2013.05.013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Finke .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Finke, P. (2024). A Brief History of Modelling Soil Development. In: Modelling Soil Development Under Global Change. SpringerBriefs in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-55583-1_2

Download citation

Publish with us

Policies and ethics