Skip to main content

Importance of Vitamin E and Its Metabolism for Health and Disease

  • Chapter
  • First Online:
Lipophilic Vitamins in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 28))

Abstract

Vitamin E was discovered as ‘factor X’, which has an essential function in rodent fertility. Later, it was attributed an important role as an antioxidant, and until today, vitamin E is still considered one of the most important antioxidants in human nutrition. Over the last 100 years of vitamin E research, it has been shown that this fat-soluble vitamin has a variety of important functions in the metabolism of animals and humans. Several in vitro and in vivo studies on vitamin E, or its derivatives and metabolites, demonstrate its essentiality for membrane integrity, anti-oxidative and anti-inflammatory properties as well as neuroprotection. Thus, vitamin E plays an important role in various diseases. In this article we provide an overview of the function and metabolism of vitamin E and its importance for the prevention, progression, and therapy of cardiometabolic and inflammatory diseases as well as the rare disease termed ataxia with vitamin E deficiency (AVED), which is caused by mutations in the gene encoding for the α-tocopherol transfer protein (α-TTP). We focus on the role of vitamin E in cardiovascular diseases (CVD), non-alcoholic fatty liver disease (NAFLD) and skin health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Brigelius-Flohé R (2021) Vitamin E research: past, now and future. Free Radic Biol Med 177:381–390

    Article  PubMed  Google Scholar 

  2. Wallert M, Börmel L, Lorkowski S (2021) Inflammatory diseases and vitamin E-what do we know and where do we go? Mol Nutr Food Res 65:e2000097

    Article  PubMed  Google Scholar 

  3. Gabsi S, Gouider-Khouja N, Belal S et al (2001) Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol 8:477–481

    Article  CAS  PubMed  Google Scholar 

  4. Bieri JG, Evarts RP, Gart JJ (1976) Relative activity of α-tocopherol and γ-tocopherol in preventing oxidative red cell hemolysis. J Nutr 106:124–127

    Article  CAS  PubMed  Google Scholar 

  5. Kruk J, Pisarski A, Szymańska R (2011) Novel vitamin E forms in leaves of Kalanchoe daigremontiana and Phaseolus coccineus. J Plant Physiol 168:2021–2027

    Article  CAS  PubMed  Google Scholar 

  6. Szymańska R, Nowicka B, Kruk J (2017) Vitamin E—occurrence, biosynthesis by plants and functions in human nutrition. Mini Rev Med Chem 17:1039–1052

    Article  PubMed  Google Scholar 

  7. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) (2015) Scientific opinion on dietary reference values for vitamin E as α‐tocopherol. EFSA J 13:4149

    Google Scholar 

  8. European Food Safety Authority, Scientific Panel on Dietetic Products (2006) Nutrition and allergies tolerable upper intake levels for vitamins and minerals. European Food Safety Authority, Parma

    Google Scholar 

  9. de Gaetano G (2001) Collaborative Group of the Primary Prevention Project Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice. Lancet Lond Engl 357:89–95

    Article  Google Scholar 

  10. Pastori D, Carnevale R, Cangemi R et al (2013) Vitamin E serum levels and bleeding risk in patients receiving oral anticoagulant therapy: a retrospective cohort study. J Am Heart Assoc 2:e000364

    Article  PubMed  PubMed Central  Google Scholar 

  11. von Sicherheit PS (2022) Vitamin E—oft hinterfragt und falsch kommuniziert. Ernähr Med 37:88

    Article  Google Scholar 

  12. Bundesinstitut für Risikobewertung (BfR) (2021) Aktualisierte Höchstmengenvorschläge für Vitamine und Mineralstoffe in Nahrungsergänzungsmitteln und angereicherten Lebensmitteln. Stellungnahme Nr. 009/2021 vom 15.03.2021

    Google Scholar 

  13. Hoge Gezondheidsraad Voedingsaanbevelingen voor België (2016)

    Google Scholar 

  14. Direction générale de la concurrence, de la consommation et de la répression des fraudes Nutriments (2019) Recommandations sanitaires

    Google Scholar 

  15. Miljø-og Fødevareministeriet, Fødevarestyrelsen Vejledning om kosttilskud (2017)

    Google Scholar 

  16. Food Safety Authority of Ireland Report of the Scientific Committee of the Food Safety Authority of Ireland (2020) The safety of vitamins and minerals in food supplements—Establishing tolerable upper intake levels and a risk assessment approach for products marketed in Ireland (Revision 2)

    Google Scholar 

  17. Biesalski HK (2016) Vitamine und Minerale: Indikation, Diagnostik, Therapie, 1st edn. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  18. Kayden HJ, Traber MG (1993) Absorption, lipoprotein transport, and regulation of plasma concentrations of vitamin E in humans. J Lipid Res 34:343–358

    Article  CAS  PubMed  Google Scholar 

  19. Fuller C, Chandalia M, Garg A et al (1996) RRR-alpha-tocopheryl acetate supplementation at pharmacologic doses decreases low-density-lipoprotein oxidative susceptibility but not protein glycation in patients with diabetes mellitus. Am J Clin Nutr 63:753–759

    Article  CAS  PubMed  Google Scholar 

  20. Traber MG (2013) Mechanisms for the prevention of vitamin E excess. J Lipid Res 54:2295–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hosomi A, Arita M, Sato Y et al (1997) Affinity for alpha-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett 409:105–108

    Article  CAS  PubMed  Google Scholar 

  22. Arai H, Kono N (2021) α-Tocopherol transfer protein (α-TTP). Free Radic Biol Med 176:162–175

    Article  CAS  PubMed  Google Scholar 

  23. Jiang Q (2022) Metabolism of natural forms of vitamin E and biological actions of vitamin E metabolites. Free Radic Biol Med 179:375–387

    Article  CAS  PubMed  Google Scholar 

  24. Parker RS, Sontag TJ, Swanson JE (2000) Cytochrome P4503A-dependent metabolism of tocopherols and inhibition by sesamin. Biochem Biophys Res Commun 277:531–534

    Article  CAS  PubMed  Google Scholar 

  25. Sontag TJ, Parker RS (2002) Cytochrome P450 omega-hydroxylase pathway of tocopherol catabolism. Novel mechanism of regulation of vitamin E status. J Biol Chem 277:25290–25296

    Article  CAS  PubMed  Google Scholar 

  26. Bardowell SA, Duan F, Manor D et al (2012) Disruption of mouse cytochrome p450 4f14 (Cyp4f14 gene) causes severe perturbations in vitamin E metabolism. J Biol Chem 287:26077–26086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Birringer M, Pfluger P, Kluth D et al (2002) Identities and differences in the metabolism of tocotrienols and tocopherols in HepG2 cells. J Nutr 132:3113–3118

    Article  CAS  PubMed  Google Scholar 

  28. Pope SAS, Burtin GE, Clayton PT et al (2002) Synthesis and analysis of conjugates of the major vitamin E metabolite, alpha-CEHC. Free Radic Biol Med 33:807–817

    Article  CAS  PubMed  Google Scholar 

  29. Traber MG, Leonard SW, Ebenuwa I et al (2021) Vitamin E catabolism in women, as modulated by food and by fat, studied using 2 deuterium-labeled α-tocopherols in a 3-phase, nonrandomized crossover study. Am J Clin Nutr 113:92–103

    Article  PubMed  Google Scholar 

  30. Borel P, Preveraud D, Desmarchelier C (2013) Bioavailability of vitamin E in humans: an update. Nutr Rev 71:319–331

    Article  PubMed  Google Scholar 

  31. Shoulders CC, Brett DJ, Bayliss JD et al (1993) Abetalipoproteinemia is caused by defects of the gene encoding the 97 kDa subunit of a microsomal triglyceride transfer protein. Hum Mol Genet 2:2109–2116

    Article  CAS  PubMed  Google Scholar 

  32. Weber D, Kochlik B, Demuth I et al (2020) Plasma carotenoids, tocopherols and retinol—association with age in the Berlin Aging Study II. Redox Biol 32:101461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeong H, Oh JW, Son N-H, Lee S (2023) Age and sex differences in the association between serum vitamin E levels and depressive symptoms: Korea National Health and Nutrition Examination Survey. Nutrients 15:1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Athinarayanan S, Wei R, Zhang M et al (2014) Genetic polymorphism of cytochrome P450 4F2, vitamin E level and histological response in adults and children with nonalcoholic fatty liver disease who participated in PIVENS and TONIC clinical trials. PloS One 9:e95366

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bardowell SA, Stec DE, Parker RS (2010) Common variants of cytochrome P450 4F2 exhibit altered vitamin E-{omega}-hydroxylase specific activity. J Nutr 140:1901–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blum S, Vardi M, Brown JB et al (2010) Vitamin E reduces cardiovascular disease in individuals with diabetes mellitus and the haptoglobin 2–2 genotype. Pharmacogenomics 11:675–684

    Article  CAS  PubMed  Google Scholar 

  37. Schuelke M (1993) Ataxia with vitamin E deficiency. In: Adam MP, Mirzaa GM, Pagon RA et al (eds) GeneReviews. University of Washington, Seattle

    Google Scholar 

  38. Hentati F, El-Euch G, Bouhlal Y, Amouri R (2012) Ataxia with vitamin E deficiency and abetalipoproteinemia. Handb Clin Neurol 103:295–305

    Article  PubMed  Google Scholar 

  39. Jayadev S, Bird TD (2013) Hereditary ataxias: overview. Genet Med 15:673–683

    Article  CAS  PubMed  Google Scholar 

  40. Morrow MJ (1985) Neurologic complications of vitamin E deficiency: case report and review of the literature. Bull Clin Neurosci 50:53–60

    CAS  PubMed  Google Scholar 

  41. Krendel DA, Gilchrist JM, Johnson AO, Bossen EH (1987) Isolated deficiency of vitamin E with progressive neurologic deterioration. Neurology 37:538–540

    Article  CAS  PubMed  Google Scholar 

  42. Kohlschütter A, Finckh B, Nickel M et al (2020) First recognized patient with genetic vitamin E deficiency stable after 36 years of controlled supplement therapy. Neurodegener Dis 20:35–38

    Article  PubMed  Google Scholar 

  43. Costa Lemos Da Silva AG, Da Silva Ribeiro KD, Alves De Araújo GE, et al (2023) Vitamin E and cardiovascular diseases: an interest to public health? Nutr Res Rev. https://doi.org/10.1017/S0954422423000112

  44. Sozen E, Demirel T, Ozer NK (2019) Vitamin E: Regulatory role in the cardiovascular system. IUBMB Life 71:507–515

    Article  CAS  PubMed  Google Scholar 

  45. Wallert M, Schmölz L, Galli F et al (2014) Regulatory metabolites of vitamin E and their putative relevance for atherogenesis. Redox Biol 2:495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiong Z, Liu L, Jian Z et al (2023) Vitamin E and multiple health outcomes: an umbrella review of meta-analyses. Nutrients 15:3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Laslett LJ, Alagona P, Clark BA et al (2012) The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol 60:S1-49

    Article  PubMed  Google Scholar 

  48. Bjelakovic G, Nikolova D, Gluud C (2013) Meta-regression analyses, meta-analyses, and trial sequential analyses of the effects of supplementation with beta-carotene, vitamin A, and vitamin E singly or in different combinations on all-cause mortality: do we have evidence for lack of harm? PLoS ONE 8:e74558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Loffredo L, Perri L, Di Castelnuovo A et al (2015) Supplementation with vitamin E alone is associated with reduced myocardial infarction: a meta-analysis. Nutr Metab Cardiovasc Dis NMCD 25:354–363

    Article  CAS  PubMed  Google Scholar 

  50. Violi F, Nocella C, Loffredo L et al (2022) Interventional study with vitamin E in cardiovascular disease and meta-analysis. Free Radic Biol Med 178:26–41

    Article  CAS  PubMed  Google Scholar 

  51. Loh HC, Lim R, Lee KW et al (2021) Effects of vitamin E on stroke: a systematic review with meta-analysis and trial sequential analysis. Stroke Vasc Neurol 6:109–120

    Article  PubMed  Google Scholar 

  52. Gaziano JM (2004) Vitamin E and cardiovascular disease: observational studies. Ann N Y Acad Sci 1031:280–291

    Article  CAS  PubMed  Google Scholar 

  53. Vardi M, Levy NS, Levy AP (2013) Vitamin E in the prevention of cardiovascular disease: the importance of proper patient selection. J Lipid Res 54:2307–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dalan R, Goh LL, Lim CJ et al (2020) Impact of Vitamin E supplementation on vascular function in haptoglobin genotype stratified diabetes patients (EVAS Trial): a randomised controlled trial. Nutr Diabetes 10:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hochberg I, Berinstein EM, Milman U et al (2017) Interaction between the haptoglobin genotype and vitamin E on cardiovascular disease in diabetes. Curr Diab Rep 17:42

    Article  PubMed  Google Scholar 

  56. Brunt EM, Wong VW-S, Nobili V et al (2015) Nonalcoholic fatty liver disease. Nat Rev Dis Primer 1:15080

    Article  Google Scholar 

  57. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO) (2016) EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 64:1388–1402

    Article  Google Scholar 

  58. Arab JP, Arrese M, Trauner M (2018) Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol 13:321–350

    Article  CAS  PubMed  Google Scholar 

  59. Le MH, Yeo YH, Zou B et al (2022) Forecasted 2040 global prevalence of nonalcoholic fatty liver disease using hierarchical bayesian approach. Clin Mol Hepatol 28:841–850

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rinella ME, Neuschwander-Tetri BA, Siddiqui MS et al (2023) AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatol Baltim Md 77:1797–1835

    Article  Google Scholar 

  61. Valenzuela-Vallejo L, Guatibonza-García V, Mantzoros CS (2022) Recent guidelines for non-alcoholic fatty liver disease (NAFLD)/fatty liver disease (FLD): are they already outdated and in need of supplementation? Metabolism 136:155248

    Article  CAS  PubMed  Google Scholar 

  62. Civelek M, Podszun MC (2022) Genetic factors associated with response to vitamin E treatment in NAFLD. Antioxid Basel Switz 11:1284

    Article  CAS  Google Scholar 

  63. Sanyal AJ, Chalasani N, Kowdley KV et al (2010) Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 362:1675–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bril F, Biernacki DM, Kalavalapalli S et al (2019) Role of vitamin E for nonalcoholic steatohepatitis in patients with type 2 diabetes: a randomized controlled trial. Diabetes Care 42:1481–1488

    Article  CAS  PubMed  Google Scholar 

  65. Vilar-Gomez E, Vuppalanchi R, Gawrieh S et al (2020) Vitamin E improves transplant-free survival and hepatic decompensation among patients with nonalcoholic steatohepatitis and advanced fibrosis. Hepatol Baltim Md 71:495–509

    Article  CAS  Google Scholar 

  66. Klein EA, Thompson IM, Tangen CM et al (2011) Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 306:1549–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Owen KN, Dewald O (2023) Vitamin E toxicity. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  68. Powell EE, Wong VW-S, Rinella M (2021) Non-alcoholic fatty liver disease. Lancet Lond Engl 397:2212–2224

    Article  CAS  Google Scholar 

  69. Lavine JE, Schwimmer JB, Van Natta ML et al (2011) Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA 305:1659–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rinella ME, Lazarus JV, Ratziu V et al (2023) A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 79(3):E93–E94

    PubMed  Google Scholar 

  71. Valenzuela-Vallejo L, Mantzoros CS (2022) Time to transition from a negative nomenclature describing what NAFLD is not, to a novel, pathophysiology-based, umbrella classification of fatty liver disease (FLD). Metabolism 134:155246

    Article  CAS  PubMed  Google Scholar 

  72. Valenzuela-Vallejo L, Sanoudou D, Mantzoros CS (2023) Precision medicine in fatty liver disease/non-alcoholic fatty liver disease. J Pers Med 13:830

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wong R, Geyer S, Weninger W et al (2016) The dynamic anatomy and patterning of skin. Exp Dermatol 25:92–98

    Article  PubMed  Google Scholar 

  74. Shindo Y, Witt E, Han D et al (1994) Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol 102:122–124

    Article  CAS  PubMed  Google Scholar 

  75. Traber MG, Atkinson J (2007) Vitamin E, antioxidant and nothing more. Free Radic Biol Med 43:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Thiele JJ, Ekanayake-Mudiyanselage S (2007) Vitamin E in human skin: organ-specific physiology and considerations for its use in dermatology. Mol Aspects Med 28:646–667

    Article  CAS  PubMed  Google Scholar 

  77. Nwose EU, Jelinek HF, Richards RS, Kerr PG (2008) The “vitamin E regeneration system” (VERS) and an algorithm to justify antioxidant supplementation in diabetes—a hypothesis. Med Hypotheses 70:1002–1008

    Article  CAS  PubMed  Google Scholar 

  78. Thiele JJ, Traber MG, Packer L (1998) Depletion of human stratum corneum vitamin E: an early and sensitive in vivo marker of UV induced photo-oxidation. J Invest Dermatol 110:756–761

    Article  CAS  PubMed  Google Scholar 

  79. Foti C, Calogiuri G, Nettis E et al (2022) Allergic contact dermatitis from vitamins: a systematic review. Health Sci Rep 5:e766

    Article  PubMed  PubMed Central  Google Scholar 

  80. Brodkin RH, Bleiberg J (1965) Sensitivity to topically applied vitamin E. Arch Dermatol 92:76–77

    Article  CAS  PubMed  Google Scholar 

  81. Keen M, Hassan I (2016) Vitamin E in dermatology. Indian Dermatol Online J 7:311

    Article  PubMed  PubMed Central  Google Scholar 

  82. Navarro-Triviño FJ, Linares-González L, Ayén-Rodríguez Á, Ruiz-Villaverde R (2021) Allergic contact dermatitis caused by tocopheryl nicotinate. Contact Dermatitis 84:479–480

    Article  PubMed  Google Scholar 

  83. de Groot AC, Berretty PJ, van Ginkel CJ et al (1991) Allergic contact dermatitis from tocopheryl acetate in cosmetic creams. Contact Dermatitis 25:302–304

    Article  PubMed  Google Scholar 

  84. Adams AK, Connolly SM (2010) Allergic contact dermatitis from vitamin E: the experience at Mayo Clinic Arizona, 1987 to 2007. Dermat Contact Atopic Occup Drug 21:199–202

    CAS  Google Scholar 

  85. Pehr K, Forsey RR (1993) Why don’t we use vitamin E in dermatology? CMAJ Can Med Assoc J J Assoc Medicale Can 149:1247–1253

    CAS  Google Scholar 

  86. Ayres S (1986) Epidermolysis bullosa controlled by vitamin E. Int J Dermatol 25:670–671

    Article  PubMed  Google Scholar 

  87. Smith EB (1973) Vitamin E treatment of dermolytic bullous dermatosis: a controlled study. Arch Dermatol 108:254

    Article  CAS  PubMed  Google Scholar 

  88. Ayres S, Mihan R (1981) Acne vulgaris: therapy directed at pathophysiologic defects. Cutis 28:41–42

    PubMed  Google Scholar 

  89. Ayres S, Mihan R (1981) Synergism of vitamins A and E in acne vulgaris. Int J Dermatol 20:616–616

    Article  PubMed  Google Scholar 

  90. Ayres S (1973) Yellow nail syndrome: response to vitamin E. Arch Dermatol 108:267

    Article  PubMed  Google Scholar 

  91. Norton L (1985) Further observations on the yellow nail syndrome with therapeutic effects of oral alpha-tocopherol. Cutis 36:457–462

    CAS  PubMed  Google Scholar 

  92. Williams HC, Buffham R, du Vivier A (1991) Successful use of topical vitamin E solution in the treatment of nail changes in yellow nail syndrome. Arch Dermatol 127:1023–1028

    Article  CAS  PubMed  Google Scholar 

  93. Lambert EM, Dziura J, Kauls L et al (2006) Yellow nail syndrome in three siblings: a randomized double-blind trial of topical vitamin E. Pediatr Dermatol 23:390–395

    Article  PubMed  Google Scholar 

  94. Vignes S, Baran R (2017) Yellow nail syndrome: a review. Orphanet J Rare Dis 12:42

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ayres S (1983) Hailey-Hailey disease: response to vitamin E therapy. Arch Dermatol 119:450

    Article  PubMed  Google Scholar 

  96. Shukla A, Rasik AM, Patnaik GK (1997) Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound. Free Radic Res 26:93–101

    Article  CAS  PubMed  Google Scholar 

  97. Atila D, Karataş A, Keskin D, Tezcaner A (2022) Pullulan hydrogel-immobilized bacterial cellulose membranes with dual-release of vitamin C and E for wound dressing applications. Int J Biol Macromol 218:760–774

    Article  CAS  PubMed  Google Scholar 

  98. Caddeo C, Manca ML, Peris JE et al (2018) Tocopherol-loaded transfersomes: in vitro antioxidant activity and efficacy in skin regeneration. Int J Pharm 551:34–41

    Article  CAS  PubMed  Google Scholar 

  99. Na Y, Woo J, Choi WI et al (2021) α-Tocopherol-loaded reactive oxygen species-scavenging ferrocene nanocapsules with high antioxidant efficacy for wound healing. Int J Pharm 596:120205

    Article  CAS  PubMed  Google Scholar 

  100. Bonferoni MC, Riva F, Invernizzi A et al (2018) Alpha tocopherol loaded chitosan oleate nanoemulsions for wound healing. Evaluation on cell lines and ex vivo human biopsies, and stabilization in spray dried Trojan microparticles. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV 123:31–41

    Article  CAS  Google Scholar 

  101. Zahid S, Khalid H, Ikram F et al (2019) Bi-layered α-tocopherol acetate loaded membranes for potential wound healing and skin regeneration. Mater Sci Eng C Mater Biol Appl 101:438–447

    Article  CAS  PubMed  Google Scholar 

  102. Shin J, Yang SJ, Lim Y (2017) Gamma-tocopherol supplementation ameliorated hyper-inflammatory response during the early cutaneous wound healing in alloxan-induced diabetic mice. Exp Biol Med Maywood NJ 242:505–515

    Article  CAS  Google Scholar 

  103. Doostmohammadi M, Forootanfar H, Shakibaie M et al (2021) Bioactive anti-oxidative polycaprolactone/gelatin electrospun nanofibers containing selenium nanoparticles/vitamin E for wound dressing applications. J Biomater Appl 36:193–209

    Article  CAS  PubMed  Google Scholar 

  104. Hu H, Tang Y, Pang L et al (2018) Angiogenesis and full-thickness wound healing efficiency of a copper-doped borate bioactive glass/poly(lactic- co-glycolic acid) dressing loaded with vitamin E in vivo and in vitro. ACS Appl Mater Interfaces 10:22939–22950

    Article  CAS  PubMed  Google Scholar 

  105. Darenskaya MA, Kolesnikova LI, Kolesnikov SI (2021) Oxidative stress: pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bull Exp Biol Med 171:179–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bolajoko EB, Akınosun OM, Anetor J, Mossanda KS (2017) Relationship between selected micronutrient deficiencies and oxidative stress biomarkers in diabetes mellitus patients with foot ulcers in Ibadan, Nigeria. Turk J Med Sci 47:1117–1123

    Article  CAS  PubMed  Google Scholar 

  107. Altavilla D, Saitta A, Cucinotta D et al (2001) Inhibition of lipid peroxidation restores impaired vascular endothelial growth factor expression and stimulates wound healing and angiogenesis in the genetically diabetic mouse. Diabetes 50:667–674

    Article  CAS  PubMed  Google Scholar 

  108. Musalmah M, Nizrana MY, Fairuz AH et al (2005) Comparative effects of palm vitamin E and alpha-tocopherol on healing and wound tissue antioxidant enzyme levels in diabetic rats. Lipids 40:575–580

    Article  CAS  PubMed  Google Scholar 

  109. Afzali H, Jafari Kashi AH, Momen-Heravi M et al (2019) The effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc 27:277–284

    Google Scholar 

  110. Hobson R (2016) Vitamin E and wound healing: an evidence-based review. Int Wound J 13:331–335

    Article  PubMed  Google Scholar 

  111. Ciffolilli S, Wallert M, Bartolini D et al (2015) Human serum determination and in vitro anti-inflammatory activity of the vitamin E metabolite α-(13′-hydroxy)-6-hydroxychroman. Free Radic Biol Med 89:952–962

    Article  CAS  PubMed  Google Scholar 

  112. Pein H, Ville A, Pace S et al (2018) Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase. Nat Commun 9(1):3834

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wallert M, Schmölz L, Koeberle A et al (2015) α-Tocopherol long-chain metabolite α-13′-COOH affects the inflammatory response of lipopolysaccharide-activated murine RAW264.7 macrophages. Mol Nutr Food Res 59:1524–1534

    Article  CAS  PubMed  Google Scholar 

  114. Riedl R, Wallert M, Lorkowski S, Wiegand C (2023) Effects of histamine and the α-tocopherol metabolite α-13′-COOH in an atopic dermatitis full-thickness skin model. Mol Basel Switz 28:440

    CAS  Google Scholar 

  115. Hoff J, Karl B, Gerstmeier J et al (2021) Controlled release of the α-tocopherol-derived metabolite α-13’-carboxychromanol from bacterial nanocellulose wound cover improves wound healing. Nanomater Basel Switz 11:1939

    Article  CAS  Google Scholar 

  116. International League of Dermatological Societies (2022) Global report on atopic dermatitis

    Google Scholar 

  117. Zollner TM (2002) Atopische Dermatitis: mit 51 Tabellen. Blackwell-Wiss.-Verl, Berlin

    Google Scholar 

  118. Spika I (2002) Genaktivierung und Repression von Transkriptionsfaktoren durch topische Glucocorticoide. Weißensee-Verl, Berlin

    Google Scholar 

  119. Plevnik Kapun A, Salobir J, Levart A et al (2013) Plasma and skin vitamin E concentrations in canine atopic dermatitis. Vet Q 33:2–6

    Article  PubMed  Google Scholar 

  120. Liu X, Yang G, Luo M et al (2021) Serum vitamin E levels and chronic inflammatory skin diseases: a systematic review and meta-analysis. PloS One 16:e0261259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Antille C, Sorg O, Lübbe J, Saurat J-H (2002) Decreased oxidative state in non-lesional skin of atopic dermatitis. Dermatol Basel Switz 204:69–71

    Article  CAS  Google Scholar 

  122. Thiele JJ, Weber SU, Packer L (1999) Sebaceous gland secretion is a major physiologic route of vitamin E delivery to skin. J Invest Dermatol 113:1006–1010

    Article  CAS  PubMed  Google Scholar 

  123. Plevnik Kapun A, Salobir J, Levart A et al (2014) Vitamin E supplementation in canine atopic dermatitis: improvement of clinical signs and effects on oxidative stress markers. Vet Rec 175:560

    Article  CAS  PubMed  Google Scholar 

  124. Tsoureli-Nikita E, Hercogova J, Lotti T, Menchini G (2002) Evaluation of dietary intake of vitamin E in the treatment of atopic dermatitis: a study of the clinical course and evaluation of the immunoglobulin E serum levels. Int J Dermatol 41:146–150

    Article  CAS  PubMed  Google Scholar 

  125. Javanbakht MH, Keshavarz SA, Djalali M et al (2011) Randomized controlled trial using vitamins E and D supplementation in atopic dermatitis. J Dermatol Treat 22:144–150

    Article  CAS  Google Scholar 

  126. Azzi A, Atkinson J, Ozer NK et al (2023) Vitamin E discussion forum position paper on the revision of the nomenclature of vitamin E. Free Radic Biol Med 207:178–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wallert M, Mosig S, Rennert K et al (2014) Long-chain metabolites of α-tocopherol occur in human serum and inhibit macrophage foam cell formation in vitro. Free Radic Biol Med 68:43–51

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

M.W. and S.L. were supported by the Free State of Thuringia and the European Social Fund (2019 FGR 0095). Work of M.W. was supported by the IMPULSE (DRM/2019-01). Other sources of funding include the German Federal Ministry of Education and Research (nutriCARD, grant agreement number 01EA1411A).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: L.B. and M.W.; writing original draft preparation: L.B., A.G., M.W.; writing review and editing: L.B., A.G., M.W. and S.L.; visualization: L.B., A.G.; supervision: M.W. and S.L.; project administration: M.W. and S.L.; funding acquisition: M.W. and S.L. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Maria Wallert .

Editor information

Editors and Affiliations

Ethics declarations

M.W. and S.L. have received a research grant from DSM Nutritional Products GmbH. The funder had no role in the design of the study; interpretation of data; in the writing of the manuscript; or in the decision to publish the manuscript. The remaining authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Börmel, L., Geisler, A.R., Lorkowski, S., Wallert, M. (2024). Importance of Vitamin E and Its Metabolism for Health and Disease. In: Tappia, P.S., Shah, A.K., Dhalla, N.S. (eds) Lipophilic Vitamins in Health and Disease. Advances in Biochemistry in Health and Disease, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-55489-6_9

Download citation

Publish with us

Policies and ethics