Skip to main content

Maternal Vitamin D Levels During Gestation and Impact on Offspring’s Risk of Non-communicable Diseases in Adulthood

  • Chapter
  • First Online:
Lipophilic Vitamins in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 28))

  • 28 Accesses

Abstract

Low vitamin D levels have been linked to conditions, including cardiovascular disease, certain malignancies, dementia, depression, diabetes, adverse pregnancy outcomes, and autoimmune diseases. Although vitamin D deficiency is a worldwide issue, it deserves specific attention in pregnant and nursing mothers due to the potential for unfavorable maternal–fetal outcomes. Vitamin D deficiency is increasingly prevalent among women of reproductive age and has been associated with gestational hypertension, preterm birth, and poorer offspring health. This chapter focuses on Vitamin D deficiency during gestation and its adverse effects on the fetal growth of neonates, during adolescence and adulthood of offspring. The role of epigenetic maternal–fetal adaptation mechanisms and vitamin D metabolism in the development of metabolic diseases is also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ (2012) Developmental origins of non-communicable disease: implications for research and public health. Environ Health 11:42

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang CA, Attia JR, Lye SJ, Oddy WH, Beilin L, Mori TA, Meyerkort C, Pennell CE (2021) The interactions between genetics and early childhood nutrition influence adult cardiometabolic risk factors. Sci Rep 11(1):14826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Calkins K, Devaskar SU (2011) Fetal origins of adult disease. Curr Probl Pediatr Adolesc Health Care 41(6):158–176

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bhargava SK, Sachdev HS, Fall CH, Osmond C, Lakshmy R, Barker DJ, Biswas SK, Ramji S, Prabhakaran D, Reddy KS (2004) Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med 350(9):865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kulkarni ML, Mythri HP, Kulkarni AM (2009) Thinfat phenotype in newborns. Indian J Pediatr 76(4):369–373

    Article  CAS  PubMed  Google Scholar 

  6. Tenhola S, Martikainen A, Rahiala E, Herrgard E, Halonen P, Voutilainen R (2000) Serum lipid concentrations and growth characteristics in 12-year-old children born small for gestational age. Pediatr Res 48(5):623–628

    Article  CAS  PubMed  Google Scholar 

  7. Valdez R, Athens MA, Thompson GH, Bradshaw BS, Stern MP (1994) Birthweight and adult health outcomes in a biethnic population in the USA. Diabetologia 37(6):624–631

    Article  CAS  PubMed  Google Scholar 

  8. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA (2011) The 2011 dietary reference intakes for calcium and vitamin D: what dietetics practitioners need to know. J Am Diet Assoc 111(4):524–527

    Article  CAS  PubMed  Google Scholar 

  9. Holick MF, MacLaughlin JA, Clark MB, Holick SA, Potts JT Jr, Anderson RR, Blank IH, Parrish JA, Elias P (1980) Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science 210(4466):203–205

    Article  CAS  PubMed  Google Scholar 

  10. Webb AR, DeCosta BR, Holick MF (1989) Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation. J Clin Endocrinol Metab 68(5):882–887

    Article  CAS  PubMed  Google Scholar 

  11. Institute of Medicine (US) Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (2000) DRI dietary reference intakes: applications in dietary assessment. National Academies Press, Washington. PMID: 25057725

    Google Scholar 

  12. Borel P, Caillaud D, Cano NJ (2015) Vitamin D bioavailability: state of the art. Crit Rev Food Sci Nutr 55(9):1193–1205

    Article  CAS  PubMed  Google Scholar 

  13. Bouillon R (2017) Comparative analysis of nutritional guidelines for vitamin D. Nat Rev Endocrinol 13(8):466–479

    Article  CAS  PubMed  Google Scholar 

  14. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281

    Article  CAS  PubMed  Google Scholar 

  15. Bikle DD (2000) Vitamin D: production, metabolism and mechanisms of action. In: Feingold KR, Anawalt B, Blackman MR et al (eds) Endotext. South Dartmouth (MA)

    Google Scholar 

  16. Tebben PJ, Singh RJ, Kumar R (2016) Vitamin D-mediated hypercalcemia: mechanisms, diagnosis, and treatment. Endocr Rev 37(5):521–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jukic AMZ, Hoofnagle AN, Lutsey PL (2018) Measurement of vitamin D for epidemiologic and clinical research: shining light on a complex decision. Am J Epidemiol 187(4):879–890

    Article  PubMed  Google Scholar 

  18. Bell TD, Demay MB, Burnett-Bowie SA (2010) The biology and pathology of vitamin D control in bone. J Cell Biochem 111(1):7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holick MF (2015) Vitamin D and brain health: the need for vitamin D supplementation and sensible sun exposure. J Intern Med 277(1):90–93

    Article  CAS  PubMed  Google Scholar 

  20. Franczyk A, Stolarz-Skrzypek K, Wesolowska A, Czarnecka D (2014) Vitamin D and vitamin D receptor activators in treatment of hypertension and cardiovascular disease. Cardiovasc Hematol Disord Drug Targets 14(1):34–44

    Article  CAS  PubMed  Google Scholar 

  21. Kongsbak M, Levring TB, Geisler C, von Essen MR (2013) The vitamin D receptor and T cell function. Front Immunol 4:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hollis BW, Johnson D, Hulsey TC, Ebeling M, Wagner CL (2011) Vitamin D supplementation during pregnancy: double-blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res 26(10):2341–2357

    Article  CAS  PubMed  Google Scholar 

  23. Kovacs CS (2015) Calcium, phosphorus, and bone metabolism in the fetus and newborn. Early Hum Dev 91(11):623–628

    Article  CAS  PubMed  Google Scholar 

  24. Kovacs CS (2011) Calcium and bone metabolism disorders during pregnancy and lactation. Endocrinol Metab Clin North Am 40(4):795–826

    Article  CAS  PubMed  Google Scholar 

  25. Gillies BR, Ryan BA, Tonkin BA, Poulton IJ, Ma Y, Kirby BJ, St-Arnaud R, Sims NA, Kovacs CS (2018) Absence of calcitriol causes increased lactational bone loss and lower milk calcium but does not impair post-lactation bone recovery in Cyp27b1 null mice. J Bone Miner Res 33(1):16–26

    Article  CAS  PubMed  Google Scholar 

  26. Zehnder D, Evans KN, Kilby MD, Bulmer JN, Innes BA, Stewart PM, Hewison M (2002) The ontogeny of 25-hydroxyvitamin D(3) 1alpha-hydroxylase expression in human placenta and decidua. Am J Pathol 161(1):105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ashley B, Simner C, Manousopoulou A, Jenkinson C, Hey F, Frost JM, Rezwan FI, White CH, Lofthouse EM, Hyde E, Cooke LDF, Barton S, Mahon P, Curtis EM, Moon RJ, Crozier SR, Inskip HM, Godfrey KM, Holloway JW, Cooper C, Jones KS, Lewis RM, Hewison M, Garbis SDD, Branco MR, Harvey NC, Cleal JK (2022) “Placental uptake and metabolism of 25(OH)vitamin D determine its activity within the fetoplacental unit.” Elife 11.

    Google Scholar 

  28. Barrera D, Avila E, Hernandez G, Mendez I, Gonzalez L, Halhali A, Larrea F, Morales A, Diaz L (2008) Calcitriol affects hCG gene transcription in cultured human syncytiotrophoblasts. Reprod Biol Endocrinol 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  29. Evans KN, Nguyen L, Chan J, Innes BA, Bulmer JN, Kilby MD, Hewison M (2006) Effects of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on cytokine production by human decidual cells. Biol Reprod 75(6):816–822

    Article  CAS  PubMed  Google Scholar 

  30. Bowyer L, Catling-Paull C, Diamond T, Homer C, Davis G, Craig ME (2009) Vitamin D, PTH and calcium levels in pregnant women and their neonates. Clin Endocrinol (Oxf) 70(3):372–377

    Article  CAS  PubMed  Google Scholar 

  31. Gale CR, Robinson SM, Harvey NC, Javaid MK, Jiang B, Martyn CN, Godfrey KM, Cooper C, Princess G, Anne Hospital Study (2008) Maternal vitamin D status during pregnancy and child outcomes. Eur J Clin Nutr 62(1):68–77

    Article  Google Scholar 

  32. Leffelaar ER, Vrijkotte TG, van Eijsden M (2010) Maternal early pregnancy vitamin D status in relation to fetal and neonatal growth: results of the multi-ethnic Amsterdam born children and their development cohort. Br J Nutr 104(1):108–117

    Article  CAS  PubMed  Google Scholar 

  33. Morley R, Carlin JB, Pasco JA, Wark JD (2006) Maternal 25-hydroxyvitamin D and parathyroid hormone concentrations and offspring birth size. J Clin Endocrinol Metab 91(3):906–912

    Article  CAS  PubMed  Google Scholar 

  34. Gernand AD, Simhan HN, Klebanoff MA, Bodnar LM (2013) Maternal serum 25-hydroxyvitamin D and measures of newborn and placental weight in a U.S. multicenter cohort study. J Clin Endocrinol Metab 98(1):398–404

    Article  CAS  PubMed  Google Scholar 

  35. Wen J, Kang C, Wang J, Cui X, Hong Q, Wang X, Zhu L, Xu P, Fu Z, You L, Wang X, Ji C, Guo X (2018) Association of maternal serum 25-hydroxyvitamin D concentrations in second and third trimester with risk of macrosomia. Sci Rep 8(1):6169

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tous M, Villalobos M, Iglesias L, Fernandez-Barres S, Arija V (2020) Vitamin D status during pregnancy and offspring outcomes: a systematic review and meta-analysis of observational studies. Eur J Clin Nutr 74(1):36–53

    Article  CAS  PubMed  Google Scholar 

  37. Maugeri A, Barchitta M, Blanco I, Agodi A (2019) Effects of vitamin D supplementation during pregnancy on birth size: a systematic review and meta-analysis of randomized controlled trials. Nutrients 11(2)

    Google Scholar 

  38. Schroder-Heurich B, Springer CJP, von Versen-Hoynck F (2020) Vitamin D effects on the immune system from periconception through pregnancy. Nutrients 12(5)

    Google Scholar 

  39. Robertson SA (2010) Immune regulation of conception and embryo implantation-all about quality control? J Reprod Immunol 85(1):51–57

    Article  CAS  PubMed  Google Scholar 

  40. Robertson SA, Moldenhauer LM (2014) Immunological determinants of implantation success. Int J Dev Biol 58(2–4):205–217

    Article  CAS  PubMed  Google Scholar 

  41. Vijayendra Chary A, Hemalatha R, Seshacharyulu M, Vasudeva Murali M, Jayaprakash D, Dinesh Kumar B (2015) Vitamin D deficiency in pregnant women impairs regulatory T cell function. J Steroid Biochem Mol Biol 147:48–55

    Article  CAS  PubMed  Google Scholar 

  42. Abdollahi E, Saghafi N, Rezaee SA, Rastin M, Jarahi L, Clifton V, Rafatpanah H (2020) Evaluation of 1,25(OH)2D3 effects on FOXP3, ROR-gammat, GITR, and CTLA-4 gene expression in the PBMCs of vitamin D-deficient women with unexplained recurrent pregnancy loss (URPL). Iran Biomed J 24(5):295–305

    PubMed  PubMed Central  Google Scholar 

  43. Shin JS, Choi MY, Longtine MS, Nelson DM (2010) Vitamin D effects on pregnancy and the placenta. Placenta 31(12):1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saito S, Nakashima A, Shima T, Ito M (2010) Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol 63(6):601–610

    Article  CAS  PubMed  Google Scholar 

  45. Adorini L, Penna G (2008) Control of autoimmune diseases by the vitamin D endocrine system. Nat Clin Pract Rheumatol 4(8):404–412

    Article  CAS  PubMed  Google Scholar 

  46. Liu NQ, Kaplan AT, Lagishetty V, Ouyang YB, Ouyang Y, Simmons CF, Equils O, Hewison M (2011) Vitamin D and the regulation of placental inflammation. J Immunol 186(10):5968–5974

    Article  CAS  PubMed  Google Scholar 

  47. Chen L, Eapen MS, Zosky GR (2017) Vitamin D both facilitates and attenuates the cellular response to lipopolysaccharide. Sci Rep 7:45172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Puthuraya S, Karnati S, Kazzi SNJ, Qureshi F, Jacques SM, Thomas R (2018) Does vitamin D deficiency affect placental inflammation or infections among very low birth weight infants? J Matern Fetal Neonatal Med 31(14):1906–1912

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Q, Chen H, Wang Y, Zhang C, Tang Z, Li H, Huang X, Ouyang F, Huang H, Liu Z (2019) Severe vitamin D deficiency in the first trimester is associated with placental inflammation in high-risk singleton pregnancy. Clin Nutr 38(4):1921–1926

    Article  CAS  PubMed  Google Scholar 

  50. Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan JW, Mader S, White JH (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173(5):2909–2912

    Article  CAS  PubMed  Google Scholar 

  51. Liu N, Kaplan AT, Low J, Nguyen L, Liu GY, Equils O, Hewison M (2009) Vitamin D induces innate antibacterial responses in human trophoblasts via an intracrine pathway. Biol Reprod 80(3):398–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou Y, Chen YH, Fu L, Yu Z, Xia MZ, Hu XG, Wang H, Xu DX (2017) Vitamin D3 pretreatment protects against lipopolysaccharide-induced early embryo loss through its anti-inflammatory effects. Am J Reprod Immunol 77(3)

    Google Scholar 

  53. Harkness LS, Bonny AE (2005) Calcium and vitamin D status in the adolescent: key roles for bone, body weight, glucose tolerance, and estrogen biosynthesis. J Pediatr Adolesc Gynecol 18(5):305–311

    Article  CAS  PubMed  Google Scholar 

  54. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (1997) Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academies Press, Washington. https://doi.org/10.17226/5776. Available from: https://www.ncbi.nlm.nih.gov/books/NBK109825/

  55. Cashman KD (2007) Vitamin D in childhood and adolescence. Postgrad Med J 83(978):230–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Charoenngam N, Holick MF (2020) Immunologic effects of vitamin D on human health and disease. Nutrients 12(7)

    Google Scholar 

  57. Mithal A, Kalra S (2014) Vitamin D supplementation in pregnancy. Indian J Endocrinol Metab 18(5):593–596

    Article  PubMed  PubMed Central  Google Scholar 

  58. Specker BL (2012) Does vitamin D during pregnancy impact offspring growth and bone? Proc Nutr Soc 71(1):38–45

    Article  CAS  PubMed  Google Scholar 

  59. Zittermann A, Schleithoff SS, Koerfer R (2005) Putting cardiovascular disease and vitamin D insufficiency into perspective. Br J Nutr 94(4):483–492

    Article  CAS  PubMed  Google Scholar 

  60. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP (2002) 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 110(2):229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sigmund CD, Okuyama K, Ingelfinger J, Jones CA, Mullins JJ, Kane C, Kim U, Wu CZ, Kenny L, Rustum Y et al (1990) Isolation and characterization of renin-expressing cell lines from transgenic mice containing a renin-promoter viral oncogene fusion construct. J Biol Chem 265(32):19916–19922

    Article  CAS  PubMed  Google Scholar 

  62. Xiang W, Kong J, Chen S, Cao LP, Qiao G, Zheng W, Liu W, Li X, Gardner DG, Li YC (2005) Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems. Am J Physiol Endocrinol Metab 288(1):E125-132

    Article  CAS  PubMed  Google Scholar 

  63. Resnick LM, Muller FB, Laragh JH (1986) Calcium-regulating hormones in essential hypertension: relation to plasma renin activity and sodium metabolism. Ann Intern Med 105(5):649–654

    Article  CAS  PubMed  Google Scholar 

  64. Kristal-Boneh E, Froom P, Harari G, Ribak J (1997) Association of calcitriol and blood pressure in normotensive men. Hypertension 30(5):1289–1294

    Article  CAS  PubMed  Google Scholar 

  65. Watson KE, Abrolat ML, Malone LL, Hoeg JM, Doherty T, Detrano R, Demer LL (1997) Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation 96(6):1755–1760

    Article  CAS  PubMed  Google Scholar 

  66. Scragg R, Jackson R, Holdaway IM, Lim T, Beaglehole R (1990) Myocardial infarction is inversely associated with plasma 25-hydroxyvitamin D3 levels: a community-based study. Int J Epidemiol 19(3):559–563

    Article  CAS  PubMed  Google Scholar 

  67. Judd SE, Tangpricha V (2009) Vitamin D deficiency and risk for cardiovascular disease. Am J Med Sci 338(1):40–44

    Article  PubMed  PubMed Central  Google Scholar 

  68. Amrein K, Scherkl M, Hoffmann M, Neuwersch-Sommeregger S, Kostenberger M, Tmava Berisha A, Martucci G, Pilz S, Malle O (2020) Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr 74(11):1498–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Adams JS, Hewison M (2012) Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Arch Biochem Biophys 523(1):95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Finer S, Khan KS, Hitman GA, Griffiths C, Martineau A, Meads C (2012) Inadequate vitamin D status in pregnancy: evidence for supplementation. Acta Obstet Gynecol Scand 91(2):159–163

    Article  CAS  PubMed  Google Scholar 

  71. Wang J, Yang F, Mao M, Liu DH, Yang HM, Yang SF (2010) High prevalence of vitamin D and calcium deficiency among pregnant women and their newborns in Chengdu, China. World J Pediatr 6(3):265–267

    Article  PubMed  Google Scholar 

  72. Del Giudice M (2012) Fetal programming by maternal stress: insights from a conflict perspective. Psychoneuroendocrinology 37(10):1614–1629

    Article  PubMed  Google Scholar 

  73. Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger A (2012) Epigenetic mechanisms in anti-cancer actions of bioactive food components–the implications in cancer prevention. Br J Pharmacol 167(2):279–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Walker CL, Ho SM (2012) Developmental reprogramming of cancer susceptibility. Nat Rev Cancer 12(7):479–486

    Article  CAS  PubMed  Google Scholar 

  75. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM, Endocrine S (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930

    Article  CAS  PubMed  Google Scholar 

  76. Dong Y, Stallmann-Jorgensen IS, Pollock NK, Harris RA, Keeton D, Huang Y, Li K, Bassali R, Guo DH, Thomas J, Pierce GL, White J, Holick MF, Zhu H (2010) A 16-week randomized clinical trial of 2000 international units daily vitamin D3 supplementation in black youth: 25-hydroxyvitamin D, adiposity, and arterial stiffness. J Clin Endocrinol Metab 95(10):4584–4591

    Article  CAS  PubMed  Google Scholar 

  77. Barker DJ, Eriksson JG, Forsen T, Osmond C (2002) Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 31(6):1235–1239

    Article  CAS  PubMed  Google Scholar 

  78. Jansson T, Powell TL (2007) Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci (Lond) 113(1):1–13

    Article  CAS  PubMed  Google Scholar 

  79. Karlic H, Varga F (2011) Impact of vitamin D metabolism on clinical epigenetics. Clin Epigenetics 2(1):55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yu S, Cantorna MT (2011) Epigenetic reduction in invariant NKT cells following in utero vitamin D deficiency in mice. J Immunol 186(3):1384–1390

    Article  CAS  PubMed  Google Scholar 

  81. Davis CD, Uthus EO (2004) DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood) 229(10):988–995

    Article  CAS  PubMed  Google Scholar 

  82. Friso S, Choi SW (2005) Gene-nutrient interactions in one-carbon metabolism. Curr Drug Metab 6(1):37–46

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Ramachandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nair, R.R., Ramachandran, S. (2024). Maternal Vitamin D Levels During Gestation and Impact on Offspring’s Risk of Non-communicable Diseases in Adulthood. In: Tappia, P.S., Shah, A.K., Dhalla, N.S. (eds) Lipophilic Vitamins in Health and Disease. Advances in Biochemistry in Health and Disease, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-55489-6_17

Download citation

Publish with us

Policies and ethics