Skip to main content

The Cardio-protective Effect of Fat-Soluble Vitamins on Anti-cancer Drug Induced Cardiotoxicity

  • Chapter
  • First Online:
Lipophilic Vitamins in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 28))

  • 17 Accesses

Abstract

Anti-tumor medications like chemotherapies fall into the class of drugs referred to as anthracyclines. These anthracyclines, while powerful and effective in dealing with tumor growth have a degenerative effect on the cardiovascular system. Many cancer patients suffer from cardiomyopathy years after treatment with these drugs have been halted. However, an overwhelming number of patients still succumb to heart disease after surviving their initial bouts with cancer. An overwhelming amount of peer-reviewed research has looked into the use of fat-soluble vitamins specifically D and E as possible protectors of the heart in patients being treated with anthracycline. Vitamin D and E have been shown to have a significant statistical effect on many biomarkers that are affected by anthracycline cardiotoxicity. Both fat-soluble vitamins show a potential significant clinical effect that merits a further investigation in order to understand the mechanisms and pathways responsible for anthracycline mediated cardiotoxicity and possible routes to cardio protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Avila MS, Siqueira SRR, Ferreira SMA, Bocchi EA (2019) Prevention and treatment of chemotherapy-induced cardiotoxicity. Methodist DeBakey Cardiovasc J 15(4):267–273. https://doi.org/10.14797/mdcj-15-4-267

  2. Lamberti M, Giovane G, Garzillo EM, Avino F, Feola A, Porto S, Tombolini V, Di Domenico M (2014) Animal models in studies of cardiotoxicity side effects from antiblastic drugs in patients and occupational exposed workers. Biomed Res Int 2014:240642. https://doi.org/10.1155/2014/240642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Florescu M, Cinteza M, Vinereanu D (2013) Chemotherapy-induced Cardiotoxicity. Maedica 8(1):59–67

    PubMed  PubMed Central  Google Scholar 

  4. Rhodes JM, Barrientos JC (2020) Chemotherapy-free frontline therapy for CLL: is it worth it? Hematol Am Soc Hematol Educ Prog 2020(1):24–32. https://doi.org/10.1182/hematology.2020000085

  5. Feijen EA, Leisenring WM, Stratton KL, Ness KK, van der Pal HJ, van Dalen EC, Armstrong GT, Aune GJ, Green DM, Hudson MM, Loonen J, Oeffinger KC, Robison LL, Yasui Y, Kremer LC, Chow EJ (2019) Derivation of anthracycline and anthraquinone equivalence ratios to doxorubicin for late-onset cardiotoxicity. JAMA Oncol 5(6):864. https://doi.org/10.1001/jamaoncol.2018.6634

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB (2008) Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol 26(22):3777–3784. https://doi.org/10.1200/JCO.2007.14.9401

    Article  PubMed  Google Scholar 

  7. de la Guía-Galipienso F, Martínez-Ferran M, Vallecillo N, Lavie CJ, Sanchis-Gomar F, Pareja-Galeano H (2021) Vitamin D and cardiovascular health. Clin Nutr (Edinb, Scotland) 40(5):2946–2957. https://doi.org/10.1016/j.clnu.2020.12.025

    Article  CAS  Google Scholar 

  8. Lee KJ, Wright G, Bryant H, Wiggins LA, Dal Zotto VL, Schuler M, Malozzi C, Cohen MV, Gassman NR (2021) Cytoprotective effect of vitamin D on doxorubicin-induced cardiac toxicity in triple negative breast cancer. Int J Mol Sci 22(14):7439. https://doi.org/10.3390/ijms22147439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hrelia S, Fiorentini D, Maraldi T, Angeloni C, Bordoni A, Biagi PL, Hakim G (2002) Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. Biochim Biophys Acta (BBA) Biomemb 1567:150–156. https://doi.org/10.1016/s0005-2736(02)00612-0

  10. Carrasco R, Castillo RL, Gormaz JG, Carrillo M, Thavendiranathan P (2021) Role of oxidative stress in the mechanisms of anthracycline-induced cardiotoxicity: effects of preventive strategies. Oxid Med Cell Longev 2021:8863789. https://doi.org/10.1155/2021/8863789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rocca C, De Francesco EM, Pasqua T, Granieri MC, De Bartolo A, Gallo Cantafio ME, Muoio MG, Gentile M, Neri A, Angelone T, Viglietto G, Amodio N (2022) Mitochondrial determinants of anti-cancer drug-induced cardiotoxicity. Biomedicines 10(3):520. https://doi.org/10.3390/biomedicines10030520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang X, Li L, Ying Z, Pan C, Huang S, Li L, Dai M, Yan B, Li M, Jiang H, Chen S, Zhang Z, Wang X (2016) A small molecule that protects the integrity of the electron transfer chain blocks the mitochondrial apoptotic pathway. Mol Cell 63(2):229–239. https://doi.org/10.1016/j.molcel.2016.06.016

    Article  CAS  PubMed  Google Scholar 

  13. Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, Rothermel BA, Lavandero S (2020) Is mitochondrial dysfunction a common root of noncommunicable chronic diseases? Endocrine Rev 41(3):bnaa005. https://doi.org/10.1210/endrev/bnaa005

  14. Volkova M, Russell R (2011) Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Bentham Sci 7(4):214–220. https://doi.org/10.2174/157340311799960645

    Article  CAS  Google Scholar 

  15. Fox CA, Romenskaia I, Dagda RK, Ryan RO (2022) Cardiolipin nanodisks confer protection against doxorubicin-induced mitochondrial dysfunction. Biochim Biophys Acta (BBA) Biomemb 1864(10):183984. https://doi.org/10.1016/j.bbamem.2022.183984

  16. Lima AR, Santos L, Correia M, Soares P, Sobrinho-Simões M, Melo M, Máximo V (2018) Dynamin-related protein 1 at the crossroads of cancer. Genes 9(2):115. https://doi.org/10.3390/genes9020115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ko AR, Hyun HW, Min SJ, Kim JE (2016) The differential DRP1 phosphorylation and mitochondrial dynamics in the regional specific astroglial death induced by status epilepticus. Front Cell Neurosci 10:124. https://doi.org/10.3389/fncel.2016.00124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang YW, Weng HY, Tsai SF, Fan FS (2022) Disclosing an in-frame deletion of the titin gene as the possible predisposing factor of anthracycline-induced cardiomyopathy: a case report. Int J Mol Sci 23(16):9261. https://doi.org/10.3390/ijms23169261

    Article  PubMed  PubMed Central  Google Scholar 

  19. Herzog W (2018) The multiple roles of titin in muscle contraction and force production. Biophys Rev 10(4):1187–1199. https://doi.org/10.1007/s12551-017-0395-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen B, Zhong L, Roush SF, Pentassuglia L, Peng X, Samaras S, Davidson JM, Sawyer DB, Lim CC (2012) Disruption of a GATA4/Ankrd1 signaling axis in cardiomyocytes leads to sarcomere disarray: implications for anthracycline cardiomyopathy. PLoS ONE 7(4):e35743. https://doi.org/10.1371/journal.pone.0035743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen L, Holder R, Porter C, Shah Z (2021) Vitamin D3 attenuates doxorubicin-induced senescence of human aortic endothelial cells by upregulation of IL-10 via the pAMPKα/Sirt1/Foxo3a signaling pathway. PLoS ONE 16(6):e0252816. https://doi.org/10.1371/journal.pone.0252816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qiu M, Shu H, Li L, Shen Y, Tian Y, Ji Y, Sun W, Lu Y, Kong X (2022) Interleukin 10 attenuates angiotensin II-induced aortic remodelling by inhibiting oxidative stress-induced activation of the vascular p38 and NF-κB pathways. Oxid Med Cell Longev 2022:8244497. https://doi.org/10.1155/2022/8244497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bielak-Zmijewska A, Wnuk M, Przybylska D, Grabowska W, Lewinska A, Alster O, Korwek Z, Cmoch A, Myszka A, Pikula S, Mosieniak G, Sikora E (2014) A comparison of replicative senescence and doxorubicin-induced premature senescence of vascular smooth muscle cells isolated from human aorta. Biogerontology 15(1):47–64. https://doi.org/10.1007/s10522-013-9477-9

    Article  CAS  PubMed  Google Scholar 

  24. El-Bassiouny NA, Helmy MW, Hassan MA, Khedr GA (2022) The cardioprotective effect of vitamin D in breast cancer patients receiving adjuvant doxorubicin based chemotherapy. Clin Breast Cancer 22(4):359–366. https://doi.org/10.1016/j.clbc.2022.01.008

    Article  CAS  PubMed  Google Scholar 

  25. Johnson DE, O’Keefe RA, Grandis JR (2018) Targeting the IL-6/jak/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15(4):234–248. https://doi.org/10.1038/nrclinonc.2018.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saleh MA, Antar SA, Hazem RM, El-Azab MF (2020) Pirfenidone and vitamin D ameliorate cardiac fibrosis induced by doxorubicin in Ehrlich ascites carcinoma bearing mice: modulation of monocyte chemoattractant protein-1 and Jun N-terminal kinase-1 pathways. Pharmaceuticals 13(11):348. https://doi.org/10.3390/ph13110348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Awad HH, El-Derany MO, Mantawy EM, Michel HE, El-Naa MM, Salah El-Din RA, El-Brairy AI, El-Demerdash E (2021) Comparative study on beneficial effects of vitamins B and D in attenuating doxorubicin induced cardiotoxicity in rats: emphasis on calcium homeostasis. Biomed Pharmacother 140:111679. https://doi.org/10.1016/j.biopha.2021.111679

    Article  CAS  PubMed  Google Scholar 

  28. Vincent DT, Ibrahim YF, Espey MG, Suzuki YJ (2013) The role of antioxidants in the era of cardio-oncology. Cancer Chemother Pharmacol 72(6):1157–1168. https://doi.org/10.1007/s00280-013-2260-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Salehi-Tabar R, Nguyen-Yamamoto L, Tavera-Mendoza LE, Quail T, Dimitrov V, An B-S, Glass L, Goltzman D, White JH (2012) Vitamin D receptor as a master regulator of the C-myc/mxd1 network. Proc Natl Acad Sci 109(46):18827–18832. https://doi.org/10.1073/pnas.1210037109

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV (2015) Myc, metabolism, and cancer. Cancer Discov 5(10):1024–1039. https://doi.org/10.1158/2159-8290.cd-15-0507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ross D, Siegel D (2021) The diverse functionality of NQO1 and its roles in redox control. Redox Biol 41:101950. https://doi.org/10.1016/j.redox.2021.101950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee KJ, Piett CG, Andrews JF, Mann E, Nagel ZD, Gassman NR (2019) Defective base excision repair in the response to DNA damaging agents in triple negative breast cancer. PLoS ONE 14:e0223725 [Google Scholar] [CrossRef] [PubMed][Green Version]

    Google Scholar 

  33. Aimo A, Spitaleri G, Nieri D, Tavanti LM, Meschi C, Panichella G, Lupón J, Pistelli F, Carrozzi L, Bayes-Genis A, Emdin M (2022) Pirfenidone for idiopathic pulmonary fibrosis and beyond. Cardiac Fail Rev 8. https://doi.org/10.15420/cfr.2021.30

  34. El-Sharkawy A, Malki A (2020) Vitamin D signaling in inflammation and cancer: molecular mechanisms and therapeutic implications. Molecules 25(14):3219. https://doi.org/10.3390/molecules25143219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu W, Zhang L, Xu H-J, Li Y, Hu C-M, Yang J-Y, Sun M-Y (2018) The anti-inflammatory effects of vitamin D in tumorigenesis. Int J Mol Sci 19(9):2736. https://doi.org/10.3390/ijms19092736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thabet RH, Gomaa AA, Matalqah LM, Shalaby EM (2022) Vitamin D: an essential adjuvant therapeutic agent in breast cancer. J Int Med Res 50(7):030006052211138. https://doi.org/10.1177/03000605221113800

    Article  CAS  Google Scholar 

  37. Krishnan AV, Swami S, Feldman D (2012) The potential therapeutic benefits of vitamin D in the treatment of estrogen receptor positive breast cancer. Steroids 77(11):1107–1112. https://doi.org/10.1016/j.steroids.2012.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hohaus S, Tisi MC, Bellesi S, Maiolo E, Alma E, Tartaglia G, Corrente F, Cuccaro A, D’Alo’ F, Basile U, Larocca LM, De Stefano V (2017) Vitamin D deficiency and supplementation in patients with aggressive B-cell lymphomas treated with immunochemotherapy. Cancer Med 7(1):270–281. https://doi.org/10.1002/cam4.1166

  39. Hathcock JN, Shao A, Vieth R, Heaney R (2007) Risk assessment for Vitamin D. Am J Clin Nutr 85(1):6–18. https://doi.org/10.1093/ajcn/85.1.6

    Article  CAS  PubMed  Google Scholar 

  40. Amir E, Simmons CE, Freedman OC, Dranitsaris G, Cole DE, Vieth R, Ooi WS, Clemons M (2010) A phase 2 trial exploring the effects of high-dose (10,000 IU/day) vitamin D3 in breast cancer patients with bone metastases. Cancer 116(2):284–291. https://doi.org/10.1002/cncr.24749

    Article  CAS  PubMed  Google Scholar 

  41. Schleck M-L, Souberbielle J-C, Jandrain B, Da Silva S, De Niet S, Vanderbist F, Scheen A, Cavalier E (2015) A randomized, double-blind, parallel study to evaluate the dose-response of three different vitamin D treatment schemes on the 25-hydroxyvitamin D serum concentration in patients with vitamin D deficiency. Nutrients 7(7):5413–5422. https://doi.org/10.3390/nu7075227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fayez AM, Zaafan MA (2018) Eicosapentaenoic acid and vitamin E against doxorubicin induced cardiac and renal damages: role of cytochrome c and iNOS. Arch Iran Med 21(11):502–508

    PubMed  Google Scholar 

  43. Tengan CH, Moraes CT (2017) NO control of mitochondrial function in normal and transformed cells. Biochim Biophys Acta 1858(8):573–581. https://doi.org/10.1016/j.bbabio.2017.02.009

    Article  CAS  PubMed Central  Google Scholar 

  44. Xue Q, Yan Y, Zhang R, Xiong H (2018) Regulation of iNOS on immune cells and its role in diseases. Int J Mol Sci 19(12):3805. https://doi.org/10.3390/ijms19123805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I, Kontek R (2023) Doxorubicin—an agent with multiple mechanisms of anticancer activity. Cells 12(4):659. https://doi.org/10.3390/cells12040659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu H, Sarkar S, Scott L, Danelisen I, Trush M, Jia Z, Li YR (2016) Doxorubicin redox biology: redox cycling, topoisomerase inhibition, and oxidative stress. React Oxygen Species 189–198. https://doi.org/10.20455/ros.2016.835

  47. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:1–31. https://doi.org/10.1155/2014/360438

    Article  CAS  Google Scholar 

  48. Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, Antholine WE, Zielonka J, Srinivasan S, Avadhani NG, Kalyanaraman B (2009) Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q. Biophys J 96(4):1388–1398. https://doi.org/10.1016/j.bpj.2008.10.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Webster KA (2012) Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol 8(6):863–884. https://doi.org/10.2217/fca.12.58

    Article  CAS  PubMed  Google Scholar 

  50. Li P, Zhou L, Zao T, Liu X, Zhang P, Liu Y, Zheng X, Li Q (2017) Caspase-9: structure, mechanisms and clinical application. Oncotarget 8(14):23996–24008. https://doi.org/10.18632/oncotarget.15098

  51. Donia T, Eldaly S, Ali EMM (2018) Ameliorating oxidative stress and inflammation by Hesperidin and vitamin E in doxorubicin induced cardiomyopathy. Turk J Biochem 44(2):207–217. https://doi.org/10.1515/tjb-2018-0156

    Article  CAS  Google Scholar 

  52. Bhatnagar R, Dixit NM, Yang EH, Sallam T (2022) Cancer therapy’s impact on lipid metabolism: mechanisms and future avenues. Front Cardiovasc Med 9. https://doi.org/10.3389/fcvm.2022.925816

  53. Zhang D, Wang F, Li P, Gao Y (2022) Mitochondrial Ca2+ homeostasis: emerging roles and clinical significance in cardiac remodeling. Int J Mol Sci 23(6):3025. https://doi.org/10.3390/ijms23063025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ikwegbue P, Masamba P, Oyinloye B, Kappo A (2017) Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals 11(1):2. https://doi.org/10.3390/ph11010002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van der Pol A, van Gilst WH, Voors AA, van der Meer P (2019) Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail 21(4):425–435. https://doi.org/10.1002/ejhf.1320

    Article  PubMed  Google Scholar 

  56. Hu Y, Sun B, Zhao B, Mei D, Gu Q, Tian Z (2018) Cisplatin-induced cardiotoxicity with midrange ejection fraction. Medicine 97(52). https://doi.org/10.1097/md.0000000000013807

  57. Ibrahim MA, Bakhaat GA, Tammam HG, Mohamed RM, El-Naggar SA (2019) Cardioprotective effect of green tea extract and vitamin E on cisplatin-induced cardiotoxicity in mice: toxicological, histological and immunohistochemical studies. Biomed Pharmacother 113:108731. https://doi.org/10.1016/j.biopha.2019.108731

    Article  CAS  PubMed  Google Scholar 

  58. Ziegler M, Wallert M, Lorkowski S, Peter K (2020) Cardiovascular and metabolic protection by Vitamin E: a matter of treatment strategy? Antioxidants 9(10):935. https://doi.org/10.3390/antiox9100935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Babuin L, Jaffe AS (2005) Troponin: the biomarker of choice for the detection of cardiac injury. Can Med Assoc J 1191–1202. https://doi.org/10.1503/cmaj.050141

  60. Aydin S, Ugur K, Aydin S, Sahin İ, Yardim M (2019) Biomarkers in acute myocardial infarction: current perspectives. Vasc Health Risk Manag 15:1–10. https://doi.org/10.2147/VHRM.S166157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378. https://doi.org/10.1016/j.ejphar.2014.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pillai K, Ayaz S, Bhandari U (2005) Influence of DL α-lipoic acid and vitamin-E against doxorubicin-induced biochemical and histological changes in the cardiac tissue of rats. Indian J Pharmacol 37(5):294. https://doi.org/10.4103/0253-7613.16852

    Article  Google Scholar 

  63. Sethi R, Takeda N, Nagano M, Dhalla NS (2000) Beneficial effects of vitamin E treatment in acute myocardial infarction. J Cardiovasc Pharmacol Ther 5(1):51–58. https://doi.org/10.1177/107424840000500107

    Article  CAS  PubMed  Google Scholar 

  64. Tappel AL, Dillard CJ (1981) In vivo lipid peroxidation: measurement via exhaled pentane and protection by vitamin E. Fed Proc 40(2):174–178

    CAS  PubMed  Google Scholar 

  65. Martemucci G, Costagliola C, Mariano M, D’andrea L, Napolitano P, D’Alessandro AG (2022) Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2(2):48–78. https://doi.org/10.3390/oxygen2020006

    Article  CAS  Google Scholar 

  66. Ajmal K, Sharif M, Afzal A, Khan B, Ajmal M (2015) Early detection of doxorubicin-induced cardiotoxicity and its prevention by Carvedilol. Int J Basic Clin Pharmacol 1. https://doi.org/10.5455/2319-2003.ijbcp20150420

Download references

Acknowledgements

Our sincere thanks to Ms. Gurnoor Kaur, a diligent high school student, for the formatting of this manuscript in APA 7th edition, ensuring that the document adhered to the required formatting guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anureet K. Shah .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duarte, J.S., Shah, A.K. (2024). The Cardio-protective Effect of Fat-Soluble Vitamins on Anti-cancer Drug Induced Cardiotoxicity. In: Tappia, P.S., Shah, A.K., Dhalla, N.S. (eds) Lipophilic Vitamins in Health and Disease. Advances in Biochemistry in Health and Disease, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-55489-6_1

Download citation

Publish with us

Policies and ethics