Skip to main content

Variations on the Penning Trap Concept

  • Chapter
  • First Online:
Particle Confinement in Penning Traps

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 126))

  • 81 Accesses

Abstract

In this chapter, we briefly have a look at a number of variations on the idea of a Penning trap, i.e. at specific deviations from the combination of a homogeneous magnetostatic field with an aligned quadrupolar electrostatic potential. We discuss only those designs that use magnetic and electric fields, i.e. we are not concerned with Paul traps, Kingdon traps and so forth, which are a huge topic on their own.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Stahl et al., A planar Penning trap. Eur. Phys. J. D 32, 139 (2005)

    Article  ADS  Google Scholar 

  2. A.D. Poularikas, Transforms and Applications Handbook, 3rd ed. (CRC Press, Boca Raton, 2010). ISBN 9781420066524

    Google Scholar 

  3. F. Galve, G. Werth, Motional frequencies in a planar Penning trap. Hyp. Int. 174, 41 (2007)

    Article  ADS  Google Scholar 

  4. J. Pinder, J. Verdu, A planar Penning trap with tunable dimensionality of the trapping potential. Int. J. Mass Spectrom. 356, 49 (2013)

    Article  Google Scholar 

  5. J.R. Castrejon-Pita, R.C. Thompson, Proposal for a planar Penning ion trap. Phys. Rev. A 72, 013405 (2005)

    Article  ADS  Google Scholar 

  6. J.R. Castrejon-Pita, Design, Development and Operation of Novel Ion Trap Designs (VDM Publishing, Saarbrücken, 2009)

    Google Scholar 

  7. M. Hellwig, A. Bautista-Salvador, K. Singer, G. Werth, F. Schmidt-Kaler, Fabrication of a planar micro Penning trap and numerical investigations of versatile ion positioning protocols. New J. Phys. 12, 065019 (2010)

    Article  ADS  Google Scholar 

  8. L. Jiang, W.B. Whitten, S. Pau, A planar ion trapping microdevice with integrated waveguides for optical detection. Opt. Express 19, 3037 (2011)

    Article  ADS  Google Scholar 

  9. P. Bushev et al., Electrons in a cryogenic planar Penning trap and experimental challenges for quantum processing. Eur. Phys. J. D 50, 97 (2008)

    Article  ADS  Google Scholar 

  10. F. Galve, P. Fernandez, G. Werth, Operation of a planar Penning trap. Eur. Phys. J. D 40, 201 (2006)

    Article  ADS  Google Scholar 

  11. J. Goldman, G. Gabrielse, Optimized planar Penning traps for quantum-information studies. Phys. Rev. A 81, 052335 (2010)

    Article  ADS  Google Scholar 

  12. J. Goldman, G. Gabrielse, Optimized planar Penning traps for quantum information studies. Hyp. Int. 199, 279 (2011)

    Article  ADS  Google Scholar 

  13. J. Verdu, Theory of the coplanar-waveguide Penning trap. New J. Phys. 13, 113029 (2011)

    Article  ADS  Google Scholar 

  14. E. Fischer, Three-dimensional stabilisation of charged particles in a quadrupole field. Z. Phys. 156, 1 (1959)

    Article  ADS  Google Scholar 

  15. G.Z. Li, A quantum particle in a combined trap. Z. Phys. D 10, 451 (1988)

    Article  Google Scholar 

  16. W.M. Itano, Atomic ion frequency standards. Proc. IEEE 79, 936 (1991)

    Article  ADS  Google Scholar 

  17. R. Blümel, Comment on “Regular and chaotic motions in ion traps: a nonlinear analysis of trap equations”. Phys. Rev. A 48, 854 (1992)

    Google Scholar 

  18. G.-Z. Li, G. Werth, The combined trap and some possible applications. Physica Scripta 46, 587 (1992)

    Article  ADS  Google Scholar 

  19. D.J. Bate, K. Dholakia, R.C. Thompson, D.C. Wilson, Ion oscillation frequencies in a combined trap. J. Mod. Opt. 39, 305 (1992)

    Article  ADS  Google Scholar 

  20. K. Dholakia, G. Horvath, D.M. Segal, R.C. Thompson, Photon correlation measurement of ion oscillation frequencies in a combined trap. J. Mod. Opt. 39, 2179 (1992)

    Article  ADS  Google Scholar 

  21. G.Z.K. Horvath, J.-L. Hernandez-Pozos, K. Dholakia, J. Rink, D.M. Segal, R.C. Thompson, Ion dynamics in perturbed quadrupole ion traps. Phys. Rev. A 57, 1944 (1998)

    Google Scholar 

  22. Y. Huang, G.-Z. Li, S. Guan, A.G. Marshall, A combined linear ion trap for mass spectrometry. J. Am. Soc. Mass Spectrom. 8, 962 (1997)

    Article  Google Scholar 

  23. M.A. van Eijkelenborg, M.E.M. Storkey, D.M. Segal, R.C. Thompson, Ion dynamics in a novel linear combined trap. Int. J. Mass Spectrom. 188, 155 (1999)

    Article  Google Scholar 

  24. M. Yan, X. Luo, X. Zhu, Potential usage of the magnetron-motion-free mode of one ion confined in a combined trap. Appl. Phys. 67, 235 (1998)

    Article  Google Scholar 

  25. G. Gabrielse, S.L. Rolston, L. Haarsma, W. Kells, Antihydrogen production using trapped plasmas. Phys. Lett. A 129, 38 (1988)

    Article  ADS  Google Scholar 

  26. D.S. Hall, G. Gabrielse, Electron cooling of protons in a nested penning trap. Phys. Rev. Lett. 77, 1962 (1996)

    Article  ADS  Google Scholar 

  27. G. Gabrielse et al., Driven production of cold antihydrogen and the first measured distribution of antihydrogen states. Phys. Rev. Lett. 89, 233401 (2002)

    Article  ADS  Google Scholar 

  28. M. Amoretti et al., Production and detection of cold antihydrogen atoms. Nature 419, 456 (2002)

    Article  ADS  Google Scholar 

  29. L. Suess, C.D. Finch, R. Parthasarathy, S.B. Hill, F.B. Dunning, Permanent magnet Penning trap for heavy ion storage. Rev. Sci. Inst. 73, 2861 (2002)

    Article  ADS  Google Scholar 

  30. J.N. Tan, S.M. Brewer, N.D. Guise, Penning traps with unitary architecture for storage of highly charged ions. Rev. Sci. Instrum. 83, 023103 (2012)

    Article  ADS  Google Scholar 

  31. S.M. Brewer, N.D. Guise, J.N. Tan, Capture and isolation of highly charged ions in a unitary Penning trap. Phys. Rev. A 88, 063403 (2013)

    Article  ADS  Google Scholar 

  32. S. Fogwell Hoogerheide, Experiments with highly-ionized atoms in unitary penning traps. Atoms 3, 367 (2015)

    Google Scholar 

  33. Y.V. Gott, M.S. Ioffe, V.G. Telkowskii, Some results on confinement in magnetic trapping. Nucl. Fusion, Suppl. 2, Pt. 3, 1045 (1962)

    Google Scholar 

  34. D.E. Pritchard, Cooling neutral atoms in a magnetic trap for precision spectroscopy. Phys. Rev. Lett. 51, 1336 (1983)

    Article  ADS  Google Scholar 

  35. T.M. Squires, P. Yesley, G. Gabrielse, Stability of a combined Penning-Ioffe trap. Phys. Rev. Lett. 86, 5266 (2001)

    Article  ADS  Google Scholar 

  36. G. Gabrielse et al., Antiproton confinement in a Penning-Ioffe trap for antihydrogen. Phys. Rev. Lett. 98, 113002 (2007)

    Article  ADS  Google Scholar 

  37. G. Gabrielse et al., Antihydrogen production within a Penning-Ioffe trap. Phys. Rev. Lett. 100, 113001 (2008)

    Article  ADS  Google Scholar 

  38. J.H. Malmberg, C.F. Driscoll, Long-time containment of a pure electron plasma. Phys. Rev. Lett. 44, 654 (1980)

    Article  ADS  Google Scholar 

  39. D.H.E. Dubin, Plasmas in Penning traps, in Trapped Charged Particles, ed. by M. Knoop, N. Madsen, R.C. Thompson (World Scientific, 2016)

    Google Scholar 

  40. J. Fajans, A. Schmidt, Malmberg-Penning and Minimum-B trap compatibility: the advantages of higher-order multipole traps. Nucl. Inst. Meth. A 521, 318 (2004)

    Article  ADS  Google Scholar 

  41. D.L. Eggleston, Confinement of test particles in a Malmberg-Penning trap with a biased axial wire. Phys. Plasmas 4, 1196 (1997)

    Article  ADS  Google Scholar 

  42. S. Robertson, Annular Malmberg-Penning trap for studies of plasma confinement. Rev. Sci. Inst. 70, 2993 (1999)

    Article  ADS  Google Scholar 

  43. S. Robertson, Electron confinement in an annular Penning trap. Phys. Plasmas 7, 2340 (2000)

    Article  ADS  Google Scholar 

  44. J. Espejo, Q. Quraishi, S. Robertson, Experimental measurement of neoclassical mobility in an annular Malmberg-Penning trap. Phys. Rev. Lett. 84, 5520 (2000)

    Article  ADS  Google Scholar 

  45. S. Kumar et al., Properties of a cylindrical Penning trap with conical endcap openings. Physica Scripta 94(7), 075401 (2019)

    Article  ADS  Google Scholar 

  46. M. Vogel et al., A Penning trap for advanced studies with particles in extreme laser fields. Nucl. Inst. Meth. B 285, 65 (2012)

    Article  ADS  Google Scholar 

  47. S. Kumar et al., Design of a mechanically compensated Penning trap for the study of ions in extreme laser field. J. Phys. Conf. Ser. 635, 092070 (2015)

    Article  Google Scholar 

  48. S. Ringleb et al., HILITE-Ions in intense photon fields. J. Phys. Conf. Ser. 635, 092124 (2015)

    Article  Google Scholar 

  49. M. Kretzschmar, Theory of the elliptical Penning trap. Int. J. Mass Spectrom. 275, 21 (2008)

    Article  Google Scholar 

  50. M. Breitenfeldt et al., The elliptical Penning trap: experimental investigations and simulations. Int. J. Mass Spectrom. 275, 34 (2008)

    Article  Google Scholar 

  51. L.S. Brown, G. Gabrielse, Precision spectroscopy of a charged particle in an imperfect Penning trap. Phys. Rev. A 25, 2423 (1982)

    Article  ADS  Google Scholar 

  52. G. Gabrielse, Why is sideband mass spectrometry possible with ions in a Penning trap? Phys. Rev. Lett. 102, 172501 (2009)

    Article  ADS  Google Scholar 

  53. G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)

    Google Scholar 

  54. J.R. Castrejon-Pita et al., Novel designs for Penning Ion Traps. J. Mod. Opt. 54, 1581 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vogel .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogel, M. (2024). Variations on the Penning Trap Concept. In: Particle Confinement in Penning Traps. Springer Series on Atomic, Optical, and Plasma Physics, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-031-55420-9_5

Download citation

Publish with us

Policies and ethics