Skip to main content

Nanostructured Silver-Iron-Functionalized Titanium Dioxide Photo Electrocatalyst for Industrial Effluent Remediation

  • Chapter
  • First Online:
Nanoelectrocatalysts for Energy and Water Treatment

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 74))

  • 30 Accesses

Abstract

Over the past decade, the presence of organic contaminants in our natural water systems has accumulated significantly because of its increased use in industrial processes. One of the most harmful contaminants produced by the textile industry is methyl orange dye/orange II consumption of the slightest quantity (1 ppm) is toxic and detrimental to human health. The removal of methyl orange can be achieved through coagulation-flocculation, chemical precipitation, adsorption, and electrochemical treatment. However, photocatalysis is a more economical and environmentally friendly alternative. Nano-photocatalyst has shown great success in the remediation of wastewater. The semiconductor titanium dioxide has been researched by several groups for its photocatalytic activity however its efficiency is hampered by electron-hole pair recombination. Its photocatalytic activity can be enhanced through various morphological and compositional modifications. Noble metals deposited on TiO2 have been explored to enhance visible-light-activated photocatalysis. Among these, a composite consisting of silver-iron-titanium dioxide nanocomposites (AgFe-TiO2) has shown great potential towards photocatalytic oxidation of methyl orange. The degradation ratio was found to be 83% owing to their smaller size and bandgap decrease from 2.94 to 2.53 eV. This chapter presents a general overview of TiO2 application and discusses the principal technique used for its modification with Ag and Fe nanomaterials towards enhanced remediation of methyl orange. In the search for effective electrocatalysts—this chapter shows an efficient route to remove unsafe organic compounds from industrial wastewater based on a functionalized TiO2 nano-photo electrocatalyst. The study of the composition, surface area, shape, size, and nanostructure of these photocatalysts may help in the current and further development of photocatalysts for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulaziz AA, Abdel-Basit A-O, Waseem SS, Mohammed SA, Fahad AA, Taieb A, Abdullah A-K (2019) Adsorption of azo dye methyl orange from aqueous solutions using alkali-activated polypyrrole-based graphene oxide. Molecules 24:3685

    Article  Google Scholar 

  • Alshehri F, Abdelrahman K (2021) Groundwater resources exploration of Harrat Khaybar area, Northwest Saudi Arabia, using electrical resistivity tomography. J King Saud Univ—Sci 33:Article 101468

    Article  Google Scholar 

  • Ambigadevi J, Senthil K, Vo D, Haran S, Raghavan TN (2021) Recent developments in photocatalytic remediation of textile effluent using semiconductor based nanostructured catalyst: a review. J Environ Chem Eng 9:104881

    Article  CAS  Google Scholar 

  • Augugliaro V, Camera-Roda G, Loddo V, Palmisano G, Palmisano L, Soria J, Sedat Y (2015) Heterogeneous photocatalysis and photoelectrocatalysis: from unselective abatement of noxious species to selective production of high-value chemicals. J Phys Chem Lett 6:1968–1981. https://doi.org/10.1021/acs.jpclett.5b00294

    Article  CAS  PubMed  Google Scholar 

  • Bai S, Jiang J, Zhang Q, Xiong Y (2015) Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem Soc Rev 44:2893–2939

    Article  CAS  PubMed  Google Scholar 

  • Barakat MA, Kumar R (2016) Photocatalytic activity enhancement of titanium dioxide nanoparticles. In: Photocatalytic activity enhancement of titanium dioxide nanoparticles. Springer, pp 1–29

    Google Scholar 

  • Bezrodna T, Puchkovska G, Shymanovska V, Baran J, Ratajczak H (2004) IR-analysis of H-bonded H2O on the pure TiO2 surface. J Mol Struct 700:175–181. https://doi.org/10.1016/j.molstruc.2003.12.057

    Article  CAS  Google Scholar 

  • Bethi B, Sonawane SH, Rohit GS, Holkar CR, Pinjari DV, Bhanvase BA, Pandit AB (2016) Investigation of TiO2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP. Ultrason Sonochem 28:150–160

    Article  CAS  PubMed  Google Scholar 

  • Bharti B (2016) Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci Rep 6

    Google Scholar 

  • Birks LS, Friedman H (1946) Particle size determination from X-ray line broadening. J Appl Phys 17:687

    Article  CAS  Google Scholar 

  • Bono N, Ponti F, Punta C, Candiani G (2021) Effect of UV irradiation and TiO2-photocatalysis on airborne bacteria and viruses: an overview. Materials 14:1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charalampos L, Danae D, Konstantinos G (2015) Adsorption of cationic dyes onto bentonite. Sep Purif Rev 44:74–107

    Article  Google Scholar 

  • Chelbi S, Djouad D, Chelouche A, Hammiche L, Touam T, Doghmane A (2020) Effects of Ti-precursor concentration and annealing temperature on structural and morphological properties of TiO2 nano-aerogels synthesized in supercritical ethanol. N Appl Sci 2:87

    Google Scholar 

  • Devi LG, Kavitha R (2016) A review on plasmonic metal-TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl Surf Sci 360:601–622

    Article  Google Scholar 

  • Duarte CA, Goulart LR, Filice L, Lemos de Lima I, Campos-Fernández E, Dantas NO, Almeida Silva AC, Pereira Soares MB, dos Santos RR, Machado C, Cardoso A, de Aragão França LS, Costa Rocha VP, Lopes Pereira Ribeiro AR, Perez G, Carvalho LN, Alonso-Goulart V (2020) Characterization of crystalline phase of TiO2 nanocrystals, cytotoxicity and cell internalization analysis on human adipose tissue-derived mesenchymal stem cells. Materials. 13

    Google Scholar 

  • Dutta SK, Mehetor SK, Pradhan N (2015) Metal semiconductor heterostructures for photocatalytic conversion of light energy. J Phys Chem Lett 3:936–944

    Article  Google Scholar 

  • Elsalamony RA (2016) Advances in photo-catalytic materials for environmental applications. Res Rev J Mater Sci 4:26–50

    Google Scholar 

  • Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC (2015) Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C: Photochem Rev 25:1–29

    Article  CAS  Google Scholar 

  • Fu L (2017) Enhanced removal of azo dye using modified PAN nanofibrous membrane Fe complexes with adsorption/visible-driven photocatalysis bifunctional roles. Appl Surf Sci 404:206–215

    Article  Google Scholar 

  • Gadekar MR, Mansoor AM (2016) Coagulation/flocculation process for dye removal using water treatment residuals: modelling through artificial neural networks. Desalin Water Treat 57(55):26392–26400

    Article  CAS  Google Scholar 

  • Garcia-Segura S, Brillas E (2017) Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J Photochem Photobiol C: Photochem Rev 31:1–35. https://doi.org/10.1016/j.jphotochemrev.2017.01.005

    Article  CAS  Google Scholar 

  • Grange JM, Charquet D, Moulin L (1982) Zirconium in the nuclear industry: fifth conference ASTM international, pp 96–104

    Book  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor Photocatalysis. Chem Rev 1995(95):69–96

    Article  Google Scholar 

  • Ishak S, Murshed M, Akil H, Ismail N, Rasib S, Al-Gheethi A (2020) The application of modified natural polymers in toxicant dye compounds wastewater: a review. Water 12:2032

    Article  CAS  Google Scholar 

  • Jay L (2018) Pathway analysis of phenol degradation by UV/TiO2 photocatalysis using the carbon-13 isotopic labelling technique. Master of Science (Applied Science) (Water Utilisation). https://repository.up.ac.za/bitstream/handle/2263/70986/Jay_Pathway_2018.pdf?sequence=1&isAllowed=y

  • Jiang D, Otitoju TA, Ouyang Y, Shoparwe NF, Wan S, Zhang A, Li S (2021) A review on metal ions modified TiO2 for photocatalytic degradation of organic pollutants. Catalysts 11:1039

    Article  CAS  Google Scholar 

  • Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17(2005):957–970. https://doi.org/10.1105/tpc.104.029603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang X, Sihang L, Zideng D, Yunping H, Xuezhi S, Tan Z (2019) Titanium dioxide: from engineering to applications. Catalysts 9:191

    Article  Google Scholar 

  • Kavitha R, Girish KS (2020) Review on bimetallic-deposited TiO2: preparation methods, charge carrier transfer pathways and photocatalytic applications. Chem Pap 74:717–756

    Article  CAS  Google Scholar 

  • Kelgenbaeva Z, Murzubraimov B, Kozlovsky A, Tegin R, Turdubai A, Murzabekova E, Aidaraliev J, Dyusheeva B (2019) Magnetic nanoparticles preparation by chemical reduction for biomedical applications. EPJ Web Conf 201:01002

    Article  CAS  Google Scholar 

  • Khan MM, Adil SF, Al-Mayouf A (2015) Metal oxides as photocatalyst. J Saudi Chem Soc 19:462–464. https://doi.org/10.1016/j.jscs.2015.04.003

    Article  Google Scholar 

  • Kim DH, Anderson MA (1994) Photoelectrocatalytic degradation of formic acid using a porous titanium dioxide thin-film electrode. Environ Sci Technol 28:479–483

    Article  CAS  PubMed  Google Scholar 

  • Kobwittaya K, Sirivithayapakorn S (2014a) Photocatalytic reduction of nitrate over Fe-modified TiO2. APCBEE Proc 10:321–325

    Article  CAS  Google Scholar 

  • Kobwittaya K, Sirivithayapakorn S (2014b) Photocatalytic reduction of nitrate over TiO2 and Ag-modified TiO2. J Saudi Chem Soc 18(4):291–298

    Article  Google Scholar 

  • Kucharska M, Naumczyk J (2009) Degradation of selected chlorophenols by advanced oxidation processes. Environ Prot Eng 35:47–55

    CAS  Google Scholar 

  • Kumar A, Pandey G (2017) A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater Sci Eng Int J 1(3):00018

    Google Scholar 

  • Kumar M, Abebe B, Nagaswarupa HP, Murthy H, Ravikumar CR, Sabir FK (2020) Enhanced photocatalytic and electrochemical performance of TiO2-Fe2O3 nanocomposite: its applications in dye decolorization and as supercapacitors. Sci Rep Nature Res 10:1249

    Article  CAS  Google Scholar 

  • Kumari RM (2016) Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotoma leaf extract. Adv Nat Sci Nanosci Nanotechnol 7(4):045009

    Article  Google Scholar 

  • Liu J, Huang J.H, Zhou H, Antonietti M, (2015) Template-less infrared heating process for fabricating carbon nitride nanorods with efficient photocatalytic H2 evolution. ACS Appl Mater 6: 8434–8440.

    Google Scholar 

  • Lopata J, Kang Z, Young J, Bender G, Weidner JW, Shimpalee S (2020) Effects of the transport/catalyst layer interface and catalyst loading on mass and charge transport phenomena in polymer electrolyte membrane water electrolysis devices. J Electrochem Soc 167:064507

    Article  CAS  Google Scholar 

  • Mahlambi MM, Ngila CJ, Bhekie BM (2015) Recent developments in environmental photocatalytic degradation of organic pollutants: the case of titanium dioxide nanoparticles—a review. J Nanomater 29:790173

    Google Scholar 

  • Mahmood R, Pielke RA, Hubbard SKG, Niyogi D, Dirmeyer PA, McAlpine C, Carleton AM, Hale R, Gameda S, Beltrán-Przekurat A, Baker B, McNider R, Legates DR, Shepherd M, Du J, Blanken PD, Frauenfeld OW, Nair US, Fall S (2014) Land cover changes and their biogeophysical effects on climate. Int J Climatol 34:929–953. https://doi.org/10.1002/joc.3736

    Article  Google Scholar 

  • Mohammad M, Syed F, Adil A-M (2015) Metal oxides as photocatalysts. J Saudi Chem Soc 19(5):462–464

    Article  Google Scholar 

  • Moschini-Carlos V, Pompêo MLM, Lobo FL, Meirelles ST (2011) Impact of coal mining on water quality of three artificial lakes in Morozini River basin (Treviso, Santa Catarina state, Brazil). Acta Limnol Bras 23(3):271–281

    Article  Google Scholar 

  • Nakayama T, Kangawa Y, Shiraishi K (2011) Reference module in materials science and materials engineering. Comprehens Semicond Sci Technol 1:113–174

    Article  CAS  Google Scholar 

  • Pal J, Deb MK, Deshmukh DK, Verma D (2013) Removal of methyl orange by activated carbon modified by silver nanoparticles. Appl Water Sci. https://doi.org/10.1007/s13201-013-0087-0

  • Park W, Park J, Jang J, Lee H, Jeong H, Cho K, Hong S, Lee T (2013) Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology 24:095202. https://doi.org/10.1088/0957-4484/24/9/095202

    Article  CAS  PubMed  Google Scholar 

  • Patil BM, Hooli AA (2013) Evaluation of antibacterial activities of environmental benign synthesis of silver nanoparticles using the flower extracts of plumeria Alba linn. JoNSNEA 3:13–20

    CAS  Google Scholar 

  • Popli S, Patel UD (2015) Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. Int J Environ Sci Technol 12:405–420

    Article  CAS  Google Scholar 

  • Priti M, Sulagna P, Kulamani P (2019) An overview of recent progress on noble metal modified magnetic Fe3O4 for photocatalytic pollutant degradation and H2 evolution. Catal Sci Technol 9:916–941

    Article  Google Scholar 

  • Rani A, Reddy R, Sharma U, Mukherjee P, Mishra P, Kuila A, Sim LC, Saravanan P (2018) A review on the progress of nanostructure materials for energy harnessing and environmental remediation. J Nanostructure Chem 8:255–291

    Article  CAS  Google Scholar 

  • Sass DT, Mouele ESM, Ross N (2019) Nano Silver-Iron-reduced graphene oxide modified titanium dioxide photocatalytic remediation system for Organic dye. Environment 6:106–132

    Google Scholar 

  • Setiyanto H, Syaifullah MM, Adyatmika IM, Setyorini DA, Azis MY, Saraswaty V, Zulfikar MA (2021) Degradation of nonylphenol ethoxylate-10 (NPE-10) by mediated electrochemical oxidation (MEO) technology. Sains Malays 50:373–381

    Article  CAS  Google Scholar 

  • Sillanpää M, Shestakova M (2017) Fundamentals, methods and full scale applications. In: Electrochemical water treatment methods, 1st edn. eBook ISBN: 9780128114636, p 310

    Google Scholar 

  • Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JMF, Pommier T (2016) Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep 6:33643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Goldsmith B (2020) Role of electrocatalysis in the remediation of water pollutants. ACS Catal 10:3365–3371

    Article  CAS  Google Scholar 

  • Siripond P, Tuksadon W, Panita K, Tippabust E, Chaweewan S (2020) Effect of calcination temperature on photocatalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method. Appl Sci 10:993

    Article  Google Scholar 

  • Sivakumar D (2014) Role of Lemna minor Lin in treating the textile industry wastewater. Int J Environ Ecol Geol Min Eng 8:203–207

    Google Scholar 

  • Teh CY, Budiman PM, Yee Shak KP, Wu TY (2016) Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind Eng Chem Res 55:16

    Article  Google Scholar 

  • Tian Y, Tatsuma T (2004) Chem Commun:1810–1811

    Google Scholar 

  • Tomar R, Abdala A, Chaudhary R, Singh N (2020) Photocatalytic degradation of dyes by nanomaterials. Mater Today Proc 29:967–973

    Article  CAS  Google Scholar 

  • Vinodgopal K, Hotchandani S, Kamat PV (1993) Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4- chlorophenol. J Phys Chem 97(35):9040–9044

    Article  CAS  Google Scholar 

  • Wang J, Zhang P, Li X, Zhu J, Li H (2013) Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (001) facets. Appl Catal B Environ 134–135:198–204

    Article  Google Scholar 

  • Wu L, Liu X, Lv G, Zhu R, Tian L, Liu M, Li Y, Rao W, Liu T, Lia L (2021) Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different structures. Sci Rep 11:10640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiaolan K, Sihang L, Zideng D, Yunping H, Xuezhi S, Zhenquan T (2019) Titanium dioxide: from engineering to applications. Catalysts 9:191. https://doi.org/10.3390/catal9020191

    Article  CAS  Google Scholar 

  • Xing L, Jia J, Wang Y, Zhang B, Dong S (2010) Pt modified TiO2 nanotubes electrode: preparation and electrocatalytic application for methanol oxidation. Int J Hydrog Energy 35(22):12169–12173

    Article  CAS  Google Scholar 

  • Yaqoob A, Parveen T, Umar K, Ibrahim M (2020) Role of nanomaterials in the treatment of wastewater: a review. Water 12:495

    Article  CAS  Google Scholar 

  • Yaseen AD, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16:1193–1226

    Article  CAS  Google Scholar 

  • Yu ZB, Chen XQ, Kang XD, Xie YP, Zhu HZ, Wang SL, Ullah S, Ma H, Wang LZ, Liu G (2018) Noninvasively modifying band structures of wide-bandgap metal oxides to boost photocatalytic activity. Adv Mater 30:1706259

    Article  Google Scholar 

  • Yun ET (2017) Visible-light-induced activation of periodate that mimics dye-sensitization of TiO2: simultaneous decolorization of dyes and production of oxidizing radicals. Appl Catal B Environ 203:475–484

    Article  CAS  Google Scholar 

  • Zhang F, Wang X, Liu H, Liu C, Wan Y, Long Y, Cai Z (2019) Recent advances and applications of semiconductor photocatalytic technology. Appl Sci 9:2489

    Article  CAS  Google Scholar 

  • Zhang L-Y, You J, Li Q-W, Dong Z-H, Zhong Y-J, Han Y-L, You Y-H (2020) Preparation and photocatalytic property of Ag modified titanium dioxide exposed high energy crystal plane (001). Coatings 10:27

    Article  CAS  Google Scholar 

  • Zhilin AS, Jianguo L, Yalunina VR, Varlamenko DS, Bykov VA (2019) Metallography of Al-Si alloys with alloying by Fe up to 1%. KnE Engineering:300–303. https://doi.org/10.18502/keg.v1i1.4424

  • Zhou W, Liu X, Cui J, Liu D, Jing L, Jiang H, Wang J, Liu H (2011) Control synthesis of rutile TiO2 microspheres, nanoflowers, nano trees and nanobelts via acid- hydrothermal method and their optical properties. Cryst Eng Comm 13:4557–4563

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the South African National Research Foundation (NRF) for the financial support through the Thuthuka research grant (Grant NR: 121929) to achieve the completion of this work. The authors are also grateful for use of the Department of Chemistry, UWC, SensorLab Research Facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasha Ross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ross, N., Tambwe, K. (2024). Nanostructured Silver-Iron-Functionalized Titanium Dioxide Photo Electrocatalyst for Industrial Effluent Remediation. In: Raju, K., Makgopa, K., Modibane, K.D., Lichtfouse, E. (eds) Nanoelectrocatalysts for Energy and Water Treatment. Environmental Chemistry for a Sustainable World, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-031-55329-5_12

Download citation

Publish with us

Policies and ethics