Skip to main content

Climate Change Resilient Crops to Combat Food and Nutrition Insecurity in Marginal Lands

  • Chapter
  • First Online:
The Marginal Soils of Africa

Abstract

Food security and environmental conservation are crucial worldwide issues, especially given climate change’s uncertainty. The food system still deals with increased food production demand and dietary changes driven by population expansion and increasing environmental concerns. Climate change has far-reaching implications for global food security, and its effects on soil fertility, water scarcity, severe temperatures, carbon sequestration, microbial activity, and food production have already had a considerable impact on agricultural productivity worldwide. Significant modifications in food production, distribution, and consumption patterns are required to adapt to climate change and ensure global food security. As a result, excess food must come from marginal lands unsuitable for growing key staple crops under the worst-case climate change scenario. Underutilized neglected crops are promising for improving food and nutritional security because of their high nutritional profile and better tolerance to numerous abiotic stressors. This book chapter thoroughly discusses climate change and its effects on agricultural products, food and nutrition insecurity, and the necessity for expanding people to adapt to shifting climatic circumstances. Identify the critical success factors and issues that must be addressed to attain extensive adoption of climate change resilient crops using underutilized, neglected crops to alleviate food poverty and ensure appropriate nutrition on marginal lands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akoto DS, Partey ST, Denich M, Kwaku M, Borgemeister C, Schmitt CB (2020) Towards bamboo agroforestry development in Ghana: evaluation of crop performance, soil properties and economic benefit. Agrofor Syst 94:1759–1780. https://doi.org/10.1007/s10457-020-00493-7

    Article  Google Scholar 

  • Alfaia SS, Ribeiro GA, Nobre AD, Luizão RC, Luizão FJ (2004) Evaluation of soil fertility in smallholder agroforestry systems and pastures in western Amazonia. Agric Ecosyst Environ 102:409–414

    Article  Google Scholar 

  • Arah IK, Ahorbo GK, Anku EK, Kumah EK, Amaglo H (2016) Postharvest handling practices and treatment methods for tomato handlers in developing countries: a mini review. Adv Agric 1:8

    Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  • Atapattu AAAJ, Senaranthne SHS, Raveendra SAST, Egodawatte WCP, Mensah S (2017) Effect of short-term agroforestry systems on soil quality in marginal soils. Agric Res J 54:324–328. https://doi.org/10.5958/2395-146X.2017.00060.6

    Article  Google Scholar 

  • Barbieri P, Pellerin S, Nesme T (2017) Comparing crop rotations between organic and conventional farming. Sci Rep 7:13761. https://doi.org/10.1038/s41598-017-14271-6

    Article  CAS  Google Scholar 

  • Belane AK, Dakora FD (2009) Measurement of N2 fixation in 30 cowpeas (Vigna unguiculata L. Walp.) genotypes under field conditions in Ghana, using the 15N natural abundance technique. Symbiosis 48:47–56. https://doi.org/10.1007/BF03179984

    Article  CAS  Google Scholar 

  • Bele MD, Halim RA, Saud HM (2014) Intercropping corn with some selected legumes for improved forage production: a review. J Agric Sci 6(3):48–62

    Google Scholar 

  • Bell LW, Harrison MT, Kierkegaard JA (2015) Dual-purpose cropping – capitalizing on potential grain crop grazing to enhance mixed farming profitability. Crops Pasture Sci 66(4):1–4

    Google Scholar 

  • Bennett A (2001) The impact of Bt cotton on smallholder production on the Makhathini Flats, South Africa. Available on the Worldwide Web at http://www.monsantoafrica.com/reports/bt_report/BtCottonReport.html

  • Biswas A, Dey S, Huang S, Deng Y, Birhanie ZM, Zhang J, Akhter D, Liu L, Li D (2022) A comprehensive review of C. capsularis and C. Olitorius: a source of nutrition, essential Phytoconstituents and pharmacological activities. Antioxidants (Basel) 11(7):1358. https://doi.org/10.3390/antiox11071358. PMID: 35883849; PMCID: PMC9311623

  • Bleam WF (2016) Soil and environmental chemistry. Academic

    Google Scholar 

  • Burgess AJ, Cano MEC, Parkers B (2022) The deployment of intercropping and agroforestry as an adaptation to climate change. Crop Environ 1:145–160. https://doi.org/10.1016/j.crope.2022.05.001

    Article  Google Scholar 

  • Caleb PV, Al-Said F, Opara L (2013) Modified atmosphere packaging technology of fresh and fresh-cut produce and the microbial consequences a review. Food Bioproc Technol 6(2):303–329

    Article  CAS  Google Scholar 

  • Chandra D, Lee J, Choi H, Kim JG (2018) Effects of packaging on shelf life and postharvest qualities of radish roots during storage at low temperature for an extended period. J Food Qual 1:1–12

    Article  Google Scholar 

  • Chimonyo VGP, Wimalasin EM, Kunz R, Modi AT, Mabhaudhi T (2020) Optimizing traditional cropping systems under climate change: a case of maize landraces and Bambara groundnut. Front Sustain Food Syst 4:562568. https://doi.org/10.3389/fsufs.2020.562568

    Article  Google Scholar 

  • Chongtham IR, Bergkvis G, Watson CA, Sandström E, Bengtsson J, Öborn I (2017) Factors influencing crop rotation strategies on organic farms with different periods since conversion to organic production. Biol Agric Horticult 33(1):14–27

    Article  Google Scholar 

  • Coulibaly JY, Chiputwa B, Nakelse T, Kundhlande G (2017) Adoption of agroforestry and the impact on household food security among farmers in Malawi. Agric Syst 155:52–69

    Article  Google Scholar 

  • Dakora FD, Keya SO (1997) Contribution of legume nitrogen fixation to sustainable agriculture in Sub-Saharan Africa. Soil Biol Biochem 29:809–817

    Article  CAS  Google Scholar 

  • Descheemaeker K, Zijlstra M, Masikati P, Crespo O, Tui SH (2018) Effects of climate change and adaptation on the livestock component of mixed farming systems: a modelling study from semi-arid Zimbabwe. Agric Syst 159:282–295

    Article  Google Scholar 

  • Devkota K, Dhakal SC, Thapa RB (2016) Economics of beekeeping as pollination management practices adopted by farmers in Chitwan district of Nepal. Agric Food Secur 5:6. https://doi.org/10.1186/s40066-016-0053-9

    Article  Google Scholar 

  • Dias T, Dukes A, Antunes PM (2015) Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J Sci Food Agric 95:447–454

    Article  CAS  Google Scholar 

  • Dwivedi RP, Tewari RK, Kareemulla K, Chaturvedi OP, Rai P (2007) Agri-horticulture system for household livelihood – a case study. Indian Res J Ext Educ 7:21–25

    Google Scholar 

  • Etxegarai-Legarreta O, Sanchez-Famoso V (2022) The role of beekeeping in generating goods and services: the interrelation between environmental, socioeconomic, and sociocultural utilities. Agriculture 12:551. https://doi.org/10.3390/agriculture12040551

    Article  Google Scholar 

  • Everson CS, Dye PJ, Everson TM (2011) Water use of grasslands, agroforestry systems and indigenous forests. Water SA 37. https://doi.org/10.4314/was.v37i5.15

  • FAO (2006) EC-FAO Food Security programme

    Google Scholar 

  • FAO (2019) The State of food security and nutrition in the world 2012: moving forward on food loss and waste reduction. Rome, Italy, Food and Agriculture Organization of the United Nations (FAO)

    Google Scholar 

  • FAO (2020) The state of food and agriculture 2020. Overcoming water challenges in agriculture. Rome. https://doi.org/10.4060/cb1447en

  • FAO, UNICEF, WFP, WHO (2012) The state of food security and nutrition in the world 2012: economic growth is necessary but not sufcient to accelerate reduction of hunger and malnutrition. Rome, Italy, Food and Agriculture Organization of the United Nations (FAO)

    Google Scholar 

  • Fung KM, Tai APK, Yong T, Liu X, Lam HM (2019) Co-benefits of intercropping as a sustainable farming method for safeguarding food security and air quality. Environ Res Lett 14:044011. https://doi.org/10.1088/1748-9326/aafc8b

    Article  CAS  Google Scholar 

  • Galani YJH, Houbraken M, Wumbei A, Djeugap JF, Fotio D, Gong YY, Spanoghe P (2020) Monitoring and dietary risk assessment of 81 pesticide residues in 11 local agricultural products from the 3 largest cities of Cameroon. Food Control 118:107416. https://doi.org/10.1016/j.foodcont.2020.107416

    Article  CAS  Google Scholar 

  • Garcia-Benitez C, Casals C, Usall J, Sánchez-Ramos I, Melgarejo P, De Cal A (2020) Impact of Postharvest Handling on Preharvest Latent Infections Caused by Monilinia spp. in Nectarines. J Fungi (Basel) 6(4):266. https://doi.org/10.3390/jof6040266. PMID: 33158017; PMCID: PMC7711865

  • Gathumbi SM, Cadisch G, Giller KE (2002) 15N natural abundance as a tool for assessing N2 fixation of herbaceous, shrub and tree legumes in improved fallows. Biol Biochem 34:1059–1071

    Article  CAS  Google Scholar 

  • Gebru H (2015) A review of the comparative advantage of intercropping systems. J Biol Agric Healthcare 5(7):28–38

    Google Scholar 

  • Hailu M, Workneh TS, Belew D (2014) Effect of packaging materials on shelf life and quality of banana cultivars (Musa spp.). J Food Sci Technol 51(11):2947–2963

    Article  CAS  Google Scholar 

  • Hardarson G, Atkins C (2003) Optimising biological N2 fixation by legumes in farming systems. Plant Soil 252:41–54

    Article  CAS  Google Scholar 

  • Hassani A, Azapagic A, Shokri N (2021) Global predictions of primary soil salinization under changing climate in the 21st century. Nat Commun 12:6663

    Article  CAS  Google Scholar 

  • Heidari P, Abdullah Faraji S, Poczai P (2021) Magnesium transporter gene family: genome-wide identification and characterization in Theobroma cacao, Corchorus capsularis, and Gossypium hirsutum of family Malvaceae. Agronomy 11:1651. https://doi.org/10.3390/agronomy11081651

    Article  CAS  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Heywood V (2013) Overview of agricultural biodiversity and its contribution to nutrition and health. In: Fanzo J, Hunter D, Borelli T, Mattei F (eds) Diversifying food and diets: using agricultural biodiversity to improve nutrition and health. Issues in agricultural biodiversity. Earthscan

    Google Scholar 

  • Hinamen SJ, Mäkinen H, Rimhanen K, Savikko R (2016) Engaging farmers in climate change adaptation planning: assessing intercropping to support farm adaptive capacity. Agriculture 6:34. https://doi.org/10.3390/agriculture6030034

    Article  Google Scholar 

  • Hirsch P, Sprent JI, Nodulation in Legumes (2003) Ann Bot 89(6):797–798. https://doi.org/10.1093/aob/mcf128. PMCID: PMC4233837

  • Huangfu P, Atkinson R (2020) Long-term exposure to NO2− and O3 and all-cause and respiratory mortality: a systematic review and meta-analysis. Environ Int. 144:105998. https://doi.org/10.1016/j.envint.2020.105998. Epub 2020 Oct 5. PMID: 33032072; PMCID: PMC7549128

  • IPCC (2007) Climate change 2007: Impacts, adaptation and vulnerability. Working Group II Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, Chapter 12 and Summary for Policymakers

    Google Scholar 

  • ISAAA (2022) Pocket K No. 32: Biotechnology for the Development of Drought Tolerant Crops. International Service for the Acquisition of Agri-biotech Applications (ISAAA). https://www.isaaa.org/resources/publications/pocketk/32/default.asp

  • Jaenicke H, Höschle-Zeledon I (2008) Strategic framework for underutilized plant species research and development: with special reference to Asia and the Pacific, and to sub-Saharan Africa; International Centre for Underutilised Crops, Colombo Sri Lanka and global facilitation unit for underutilised species: Rome, Italy

    Google Scholar 

  • Jansen van Rensburg WS, Van Averbeke W, Slabbert R, Faber M, Van Jaarsveld P, Van Heerden SM, Wenhold F, Oelofse A (2007) African leafy vegetables in South Africa. Water SA 33(3):317–326

    Article  Google Scholar 

  • Kader A (2003) A perspective on postharvest horticulture. Hortscience 38(5):1004–1008

    Google Scholar 

  • Khanal U, Stott KJ, Armstrong R, Nuttall JG, Henry F, Christy BP, Mitchell M, Riffkin PA, Wallace AJ, Mccaskill M, Thayalakumaran T, O’Leary GJ (2021) Intercropping-evaluating the advantages to broad acre systems: a review. Agriculture 11(453):1–20

    Google Scholar 

  • Kidane BZ, Hailu MH, Haile HT (2017) Maize and potato intercropping: a technology to increase productivity and profitability in Tigray. Open Agric 2:411–416

    Article  Google Scholar 

  • Koohafkan P, Altieri MA (2017) Forgotten Agricultural Heritage: Reconnecting Food Systems and Sustainable Development Routledge, Oxon (UK)

    Google Scholar 

  • Lamikanra O (2002) Fresh-cut fruit and vegetables: science, technology, and market. CRC Press, Boca Raton

    Book  Google Scholar 

  • Li C, Hoffland E, Kuyper TW, Yu Y, Zhang F, Van der Werf W (2020) Syndromes of production in intercropping impact yield grains. Nat Plants 6:653–660

    Article  Google Scholar 

  • Lokke MM (2012) Postharvest quality changes of leafy green vegetables. PhD thesis. Aarhus University

    Google Scholar 

  • Luoh HF, Tsaur SH, Tang YY (2014) Empowering employees: job standardization and innovative behaviour. Int J Contemp Hosp Manage 26(7):1100–1117

    Article  Google Scholar 

  • Mabhaudhi T, VGP C, Hlahla S, Massawe F, Mayes S, Nhamo L (2019) Prospects of orphan crops in climate change. Planta [Internet] 250(3):695–708

    Article  CAS  Google Scholar 

  • Magcale-Macandog DB, Rañola FM, Rañola RF Jr, Ani PAB, Vidal NB (2010) Enhancing the food security of upland farming households through agroforestry in Claveria, Misamis Oriental, Philippines. Agrofor Syst 79:317–342

    Article  Google Scholar 

  • Mahwasane ST, Middleton L, Boaduo N (2013) An ethnobotanical survey of indigenous knowledge on medicinal plants used by the traditional healers of the Lwamondo area, Limpopo province, South Africa. S Afr J Bot 88:69–75

    Article  Google Scholar 

  • Maitra S, Shankar T, Sairam M, Pine S (2020) Evaluation of Gerbera (Gerbera jamesonii L.) cultivars for growth, yield and flower quality under protected cultivation. Indian J Nat Sci 10(60):20271–20276

    Google Scholar 

  • Malhi G, Kaur M (2021) Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability 13:1318. https://doi.org/10.3390/su13031318

    Article  CAS  Google Scholar 

  • Mampholo MB, Sivakumar D, Jansen van Rensburg WJ (2015) Variation in bioactive compounds and quality parameters in different modified atmosphere packaging during postharvest storage of traditional leafy vegetable (A. cruentus and S retroflexum). J Food Qual 35:1745–1757

    Google Scholar 

  • Mampholo BM, Maboko M, Soundy P, Sivakumar D (2016) Phytochemicals and overall quality of leafy lettuce (Lactuca sativa L.) varieties grown in closed hydroponic system. J Food Qual 39(6):805–815. https://doi.org/10.1111/jfq.12234

    Article  CAS  Google Scholar 

  • Maponya P, Madakaze IC, Mbili N, Dube ZP, Nkuna T, Makhwedzhana M, Tahulela T, Mongwaketsi K, Isaacs L (2021) Perceptions on the constraints to agroforestry competitiveness: a case study of agro silviculture community growers in Limpopo and Mpumalanga provinces, South Africa. Circ Econ Sustain 1:1413–1421. https://doi.org/10.1007/s43615-021-00039-8

    Article  Google Scholar 

  • Mbow C, Smith P, Skole D, Duguma L, Bustamante M (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14. https://doi.org/10.1016/j.csust.2013.09.002

    Article  Google Scholar 

  • Mekuria W, Mekonnen K (2018) Determinants ofcrop–livestock diversification in the mixed farming systems: evidence from central highlands of Ethiopia. Agric Food Secur 7(60):1–15

    Google Scholar 

  • Modi AT, Mabhaudhi T (2013) Water-use and drought tolerance of selected traditional crops Water Research Commission (WRC) Report No. 1771/1/13. 292 pages

    Google Scholar 

  • Mokgehle SN, Dakora FD, Mathews C (2014) Variation in N2 fixation and N contribution by 25 groundnuts (Arachis hypogea L.) varieties grown in different agroecologies, measured using 15N natural abundance. Agric Ecosyst Environ 195(1):161–172

    Article  CAS  Google Scholar 

  • Newaj R, Chavan S, Prasad R (2013) Agroforestry as a strategy for climate change adaptation and mitigation. Indian J Agroforestry 15:41–48

    Google Scholar 

  • Nnko LE, Kashaigili JJ, Munishi PKT, Monela GC, Lyimo PJ, Chilagane NA (2022) Carbon sequestration in agroforestry as a strategy for climate change mitigation in Kilombero cluster of SAGCOT. Int J Agric Forestry 12:29–36. https://doi.org/10.5923/j.ijaf.20221201.03

    Article  Google Scholar 

  • Nouri A, Lukas S, Singh S, Singh S, Machado S (2022) When do cover crops reduce nitrate leaching? A global meta-analysis. Glob Chang Biol 28(15):4736–4749. https://doi.org/10.1111/gcb.16269. Epub 2022 Jun 8. PMID: 35583665; PMCID: PMC9328130

  • Ortiz R, Ekanayake IJ, Mahalakshmi V, Kamara A, Menkir A, Nigam SN, Singh BB, Saxena NP (2019) Development of drought-resistant and water-stress tolerant crops through traditional breeding. In: Water for sustainable agriculture in developing regions. International Research Center for Agricultural Sciences, Japan

    Google Scholar 

  • Paranychianakis NV, Chartzoulakis KS (2005) Irrigation of Mediterranean crops with saline water: from physiology to management practices. Agric Ecosyst Environ 106:171–187

    Article  CAS  Google Scholar 

  • Parfitt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Philos Transact Royal Soc B Biol Sci 365(1554):3065–3081

    Article  Google Scholar 

  • Patil A, Lamnganbi M (2018) Impact of climate change on soil health: a review. Int J Chem Stud 6:2399–2404

    Google Scholar 

  • Pule-Meulenberg F (2014) Root-Nodule Bacteria of Legumes growing in semi-arid african soils and other areas of the world. In: Maheshwari D (eds) Bacterial diversity in sustainable agriculture. sustainable development and biodiversity, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-05936-5_4

  • Pule-Meulenberg F, Dakora FD (2009) Assessing the symbiotic dependency of grain and tree legumes on N2 fixation for their N nutrition in five agroecological zones of Botswana. Symbiosis 48:68–77

    Article  CAS  Google Scholar 

  • Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S (2019) Climate change has likely already affected global food production. PLoS One 14(5):e0217148(13)

    Article  Google Scholar 

  • Saleem MH, Ali S, Rehman M, Hasanuzzaman M, Rizwan M, Irshad S, Shafiq F, Iqbal M, Alharbi BM, Alnusaire TS, Qari SH (2020) Jute: a potential candidate for phytoremediation of metals-a review. Plants (Basel) 17 9(2):258. https://doi.org/10.3390/plants9020258. PMID: 32079368; PMCID: PMC7076354

    Article  CAS  Google Scholar 

  • Sanginga N (2003) Role of biological nitrogen fixation in legume-based cropping systems; a case study of West Africa farming systems. Plant Soil 252:25–39

    Article  CAS  Google Scholar 

  • Sarvade S, Singh R (2014) Role of agroforestry in food security. Popular Kheti 2:25–29

    Google Scholar 

  • Schmidt GA, Ruedy RA, Miller RL, Lacis AA (2010) Attribution of the present-day total greenhouse effect. J Geophys Res 115:D20106. https://doi.org/10.1029/2010JD014287

    Article  CAS  Google Scholar 

  • Shah KK, Modi B, Pandey HP, Subed A, Aryal G, Pandey M, Shrestha J (2021) Diversified crop rotation: an approach for sustainable agriculture production. Adv Agric:1–9. https://doi.org/10.1155/2021/8924087

  • Shanker AK, Shanker C, Anand A, Maheswari M (2022) Climate change and crop stress. Academic, pp i–iii., ISBN 9780128160916,. https://doi.org/10.1016/B978-0-12-816091-6.00022-5

    Book  Google Scholar 

  • Sharma R, Bhatia S, Kaur P (2018) Influence of packaging and storage conditions on biochemical quality and enzymatic activity in relation to shelf-life enhancement of fresh basil leaf. J Food Sci Technol 55(8):3199–3211

    Article  CAS  Google Scholar 

  • Shivanna KR (2022) Climate change and its impact on biodiversity and human welfare. Proc Indian Natl Sci Acad 88(2):160–171. https://doi.org/10.1007/s43538-022-00073-6. Epub 2022 May 2. PMCID: PMC9058818

  • Singh A, Deb SK, Singh S, Sharma P, Kang JS (2020) Effects of non-leguminous cover crops on yield and quality of baby corn (Zea mays L.) grown under subtropical conditions. Horticulturae 6:21. https://doi.org/10.3390/horticulturae6020021

    Article  Google Scholar 

  • Sitch S, Cox P, Collins W, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the landcarbon sink. Nature 448:791–794

    Article  CAS  Google Scholar 

  • Soil Science Glossary Terms Committee (2008) Glossary of Soil Science terms. Soil Science Society of America, ASA-CSSASSSA

    Google Scholar 

  • Spadafora ND, Amaro AL, Pereira MJ, Müller CT, Pintado M, Rogers HJ (2016) Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data. Food Chem 211:114–123

    Article  CAS  Google Scholar 

  • Spiteri K, Sacco AT (2024) Estimating electric conductivity of a saturated soil paste extract (ECe) from 1:1 (EC1:1), 1:2(EC1:2), 1:5(EC1:5) soil: water suspension ratios, in calcareous soils in the Mediterranean Islands of Melta

    Google Scholar 

  • Stark F, González-García E, Navegantes LT, Poccard-Chapuis R, Archimède H, Moulin C-H (2018) Crop-livestock integration determines the agroecological performance of mixed farming systems in Latino-Caribbean farms. Agron Sustain Dev 38(4):1–11. https://doi.org/10.1007/s13593-017-0479-x

    Article  Google Scholar 

  • Sun T, Zhao C, Feng X, Yin W, Gou Z, Lal R, Deng A, Chai Q, Song Z, Zhang W (2020) Maize-based intercropping systems achieve higher productivity and profitability with a lesser environmental footprint in a water-scarce region of Northwest China. Food Energy Secur 10:e260. https://doi.org/10.1002/fes3.260

    Article  CAS  Google Scholar 

  • Tolunay A, Korkmaz M, Alkan H (2007) Definition and classification of traditional agroforestry practices in the West Mediterranean region of Turkey. Int J Agric Res 2:22–32

    Article  Google Scholar 

  • Tripp R, Van Der Heide W (1996) The erosion of crop genetic diversity: Challenges, strategies and uncertainties, Natural resources perspectives Number 7, March 1996, Overseas Development Institute, Portland House, Stag Place, London SW1E 5DP, United Kingdom

    Google Scholar 

  • Uleh AM, Usman AI (2020) Agrisilviculture: a refuge for above and below ground biodiversity. J Res For Wildl Environ 12:290–296

    Google Scholar 

  • Van Noordwijk M, Coe R, Sinclair FL, Luedeling E, Bayala J, Muthuri CW, Cooper P, Kindt R, Duguma L, Lamanna C, Minag PA (2021) Climate change adaptation in and through agroforestry: four decades of research initiated by Peter Huxley. Mitig Adapt Strateg Glob Chang 26:18. https://doi.org/10.1007/s11027-021-09954-5

    Article  Google Scholar 

  • Volsi B, Bordin I, Higashi GE, Telles TS (2020) Economic profitability of crop rotation systems in the Caiuá sandstone area. Ciência Rural Santa Maria 50(2):1–11. https://doi.org/10.1590/0103-8478cr20190264

    Article  Google Scholar 

  • Wang G, Wang D, Zhou X, Shah S, Wang L, Ahmed M, Sayyed RZ, Fahad S (2022) Effects of cotton-peanut intercropping patterns on cotton yield formation and economic benefits. Front Sustain Food Syst 6:900230. https://doi.org/10.3389/fsufs.2022.900230

    Article  Google Scholar 

  • Wills RBH, Mcglasson WB, Graham D, Tlee H, Hall EG (1989) Postharvest-an introduction to the physiology and handling of fruit and vegetables. Van Nostrand Reinhold, New York

    Google Scholar 

  • World Urbanization Prospects: The (2011) Revision United Nations population division, New York

    Google Scholar 

  • Xuan DT, Guong VT, Rosling A, Alström S, Chai B, Högberg N (2012) Different crop rotation systems as drivers of change in soil bacterial community structure and rice yield, Oryza sativa. Biol Fertil Soils 48:217–225

    Article  Google Scholar 

  • Yahaya SM, Mardiyya AY (2019) Review of post-harvest losses of fruits and vegetables. Biomed J Sci Tech Res (BJSTR) 13:10192–10200. https://doi.org/10.26717/BJSTR.2019.13.002448

    Article  Google Scholar 

  • YuZhang Y, ZhiJie C, WeiYa L, Ling Y, Yang LZ, WuHon L, ZengJian Y, Juan, JuZhong Z (2016) The emergence, development and regional differences of mixed farming of rice and millet in the upper and middle Huai River Valley, China. Sci China Earth Sci 59(9):1779–1790

    Article  Google Scholar 

  • Zakes J, Pietsch SA, Friedel JK, Zechmeister-Boltenstern Z (2015) Can agroforestry improve soil fertility and carbon storage in smallholder banana farming systems? J Plant Nutr Soil Sci 178:237–249

    Article  Google Scholar 

  • Zerihun MF (2020) Institutional analysis of adoption of agroforestry practices in the Eastern Cape province of South Africa. S Afr J Environ Educ 36:37–55. https://doi.org/10.4314/sajee.v36i1.9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverly Mampholo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mampholo, B. et al. (2024). Climate Change Resilient Crops to Combat Food and Nutrition Insecurity in Marginal Lands. In: Nciizah, A.D., Roopnarain, A., Ndaba, B., Malobane, M.E. (eds) The Marginal Soils of Africa. Springer, Cham. https://doi.org/10.1007/978-3-031-55185-7_5

Download citation

Publish with us

Policies and ethics