Skip to main content

Sustainable Soilless Recirculating Hydroponics for Productive Use of Marginal Lands: A South African Context

  • Chapter
  • First Online:
The Marginal Soils of Africa

Abstract

Soilless recirculating hydroponic systems (those in which the nutrient solution is continuously recirculated and reused into the system) are well known for their potential to maximize crop production with minimum inputs of fertilizer and water, resulting in improved yields and quality of fresh produce, as well as increased farmer’s profitability and environmental preservation. The most implemented recirculating hydroponic systems in South Africa include the gravel and nutrient film, ebb-and-flow, and deep-water-culture techniques. Appropriate management and maintenance of these systems are crucial for increased crop productivity and water use efficiency. This is particularly relevant in South Africa for being a food-insecure and water-scarce country. This chapter highlights important production factors in recirculating hydroponics, typical crop yields, and water use efficiency obtained under South African conditions while emphasizing potential focus areas for research to improve the profitability and sustainability of crop production in soilless recirculating hydroponic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-elhakim A, Helal H (2022) Scheduling a smart hydroponic system to raise water use efficiency. Misr J Agric Eng 39(4):493–508

    Google Scholar 

  • Al-tawaha A, Al-karaki G, Massadeh A (2016) Effects of planting density and cutting height on herbage and water use efficiency of thyme (Origanum syriacum L.) grown under protected soilless and open field conditions. Res Crops 17(1):118–128

    Article  Google Scholar 

  • Asaduzzaman M, Niu G, Asao T (2022) Editorial: nutrients recycling in hydroponics: opportunities and challenges toward sustainable crop production under controlled environment agriculture. Front Plant Sci 13:845472. https://doi.org/10.3389/fpls.2022.845472

    Article  Google Scholar 

  • Araya N, Moremi M (2021) Fertilizer savings in a recirculating hydroponic system. ARC - Vegetable Ind Med Plants Newsl 10:14–15

    Google Scholar 

  • Barbosa GL, Gadelha FDA, Kublik N, Proctor A, Reichelm L, Weissinger E, Wohlleb GM, Halden RU (2015) Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. Int J Environ Res Public Health 12:6879–6891

    Article  Google Scholar 

  • Bar-Yosef BT (2008) Fertigation management and crops response to solution recycling in semi-closed greenhouses. In: Raviv M, Lieth HJ (eds) Soilless culture: theory and practice. Elsevier, Amsterdam, The Netherlands, pp 341–424

    Chapter  Google Scholar 

  • Bertolino LT, Caine RS, Gray JE (2019) Impact of stomatal density and morphology on water-use efficiency in a changing world. Front Plant Sci 10:225

    Article  Google Scholar 

  • Caixeta VM, da Mata ASP, da Silva Curvê CR, de Souza TW, Ferreira LL, Pereira AIA (2018) Hydrogen peroxide for insect and algae control in a lettuce hydroponic environment. J Agric Sci 10:221–231. https://doi.org/10.5539/jas.v10n8p221

    Article  Google Scholar 

  • Cardoso DSCP, Sediyama MAN, Poltronier Y, Fonseca MCM, Neves YF (2017) Effect of concentration and N:K ratio in nutrient solution for hydroponic production of cucumber. Rev Caatinga 30(4):818–824

    Article  Google Scholar 

  • Cardoso FB, Martinez HEP, Henriques da Silva DJ, Milagres CC, Barbosa JG (2018) Yield and quality of tomato grown in a hydroponic system with different planting densities and number of bunches per plant. Pesq Agropec Trop Goiânia 48:340–349

    Article  Google Scholar 

  • Carmassi G, Incrocci L, Maggini R, Malorgio F, Tognoni F, Pardossi A (2005) Modeling salinity build-up in recirculating nutrient solution culture. J Plant Nutr 28:431–445

    Article  CAS  Google Scholar 

  • Cerda A, Pardines J, Botella MA, Martinez V (2008) Effect of potassium on growth, water relations, and inorganic and organic solute contents for two maize cultivars grown under saline conditions. J Plant Nutr 18(4):839–851

    Article  Google Scholar 

  • Choi K, Choi E, Kim S, Lee Y (2016) Improving water and fertilizer use efficiency during the production of strawberry in coir substrate hydroponics using a FDR sensor-automated irrigation system. HEB 57(5):431–439

    CAS  Google Scholar 

  • Chrysargyris A, Petropoulos SA, Prvulovic D, Tzortzakis N (2021) Performance of hydroponically cultivated geranium and common verbena under salinity and high electrical conductivity levels. Agronomy 11:1237

    Article  CAS  Google Scholar 

  • Combrink NJJ (1998) Tomato fruit quality and yield affected by NaCl in nutrient solutions. SASHS 8:57–59

    Google Scholar 

  • Da Silva MG, Soares TM, Gheyi HR, Costa IP, Vasconcelos RS (2020) Growth, production and water consumption of coriander grown under different recirculation intervals and nutrient solution depths in hydroponic channels. EJFA 32(4):281–294. https://doi.org/10.9755/ejfa.2020.v32.i4.2094

    Article  Google Scholar 

  • Dallagnol LJ, Rodrigues FA, Tanaka FAO, Amorim L, Camargo LEA (2012) Effect of potassium silicate on epidemic components of powdery mildew on melon. Plant Pathol 61:323–330. https://doi.org/10.1111/j.1365-3059.2011.02518.x

    Article  CAS  Google Scholar 

  • Dos Santos JF, Filho MAC, Cruz JL, Soares TM, Cruz AML (2019) Growth, water consumption and basil production in the hydroponic system under salinity. Rev Ceres, Viçosa 66(1):45–53. https://doi.org/10.1590/0034-737X201966010007

    Article  CAS  Google Scholar 

  • Drake PL, Froend RH, Franks PJ (2013) Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J Exp Bot 64:495–505. https://doi.org/10.1093/jxb/ers347

    Article  CAS  Google Scholar 

  • Du Plooy CP, Maboko MM, van den Heever E, Chiloane S (2012) Research and technology transfer by Agricultural Research Council to sustain South African hydroponic industry. Acta Hortic 947:147–151

    Article  Google Scholar 

  • du Toit M (2022) Choose the right hydroponics system for your operation. Farmer’s Weekly Magazine

    Google Scholar 

  • Ebrahimi R, Souri MK, Ebrahimi F, Ahmadizadeh M (2012) Growth and yield of strawberries under different potassium concentrations of hydroponic system in three substrates. World Appl Sci 16(10):1380–1386

    CAS  Google Scholar 

  • Gillespie DP, Kubota C, Miller SA (2020) Effects of low pH of hydroponic nutrient solution on plant growth, nutrient uptake, and root rot disease incidence of basil (Ocimum basilicum L.). HortScience 55:1251–1258

    Article  CAS  Google Scholar 

  • Gillespie DP, Papio G, Kubota C (2021) High nutrient concentrations of hydroponic solution can improve growth and nutrient uptake of spinach (Spinacia oleracea l.) grown in acidic nutrient solution. HortScience 56(6):687–694

    Article  CAS  Google Scholar 

  • Haworth M, Scutt CP, Douthe C, Marino G, Gomes MTG, Loreto F et al (2018) Allocation of the epidermis to stomata relates to stomatal physiological control: stomatal factors involved in the evolutionary diversification of the angiosperms and development of amphistomaty. EEB 151:55–63. https://doi.org/10.1016/j.envexpbot.2018.04.010

    Article  CAS  Google Scholar 

  • Hosseini MS, Samsampour D, Ebrahimi M, Abadia J, Khanahmadi M (2018) Effect of drought stress on growth parameters, osmolyte contents, antioxidant enzymes and glycyrrhizin synthesis in licorice (Glycyrrhiza glabra L.) grown in the field. Phytochem 156:124–134

    Article  CAS  Google Scholar 

  • Hosseinzadeh S, Verheust Y, Bonarrigo G, Van Hulle S (2017) Closed hydroponic systems: operational parameters, root exudates occurrence and related water treatment. Rev Environ Sci Biotechnol 16:59–79

    Article  Google Scholar 

  • Huang R, Tu JC (2001) Effects of nutrient solution pH on the survival and transmission of Clavibacter michiganensis ssp. michiganensis in hydroponuically grown tomatoes. Plant Pathol 50:503–508

    Article  CAS  Google Scholar 

  • Júnior JAS, Gheyi HR, Cavalcante AR, Medeiros SDS, Dias NDS, Santos DBD (2015) Water use efficiency of coriander produced in a low-cost hydroponic system. Rev Bras Eng Agric Ambient 19(12):1152–1158

    Article  Google Scholar 

  • Kaiser C, Ernst M (2016) Hydroponic Lettuce. CCDCP-63. Lexington, KY: Center for Crop Diversification, University of Kentucky College of Agriculture, Food and Environment. Available online: http://www.uky.edu/ccd/sites/www.uky.edu.ccd/files/hydrolettuce.pdf

  • Kalantari F, Tahir OM, Lahijani AM, Kalantari S (2017) A Review of vertical farming technology: a Guide for implementation of building integrated agriculture in cities. Adv Eng Forum 24:76–91. https://doi.org/10.4028/www.scientific.net/AEF.24.76

    Article  Google Scholar 

  • Kanto T, Miyoshi A, Ogawa T, Maekawa K, Aino M (2004) Suppressive effect of potassium silicate on powdery mildew of strawberry in hydroponics. J Gen Plant Pathol 70:207–211. https://doi.org/10.1007/s10327-004-0117-8

    Article  CAS  Google Scholar 

  • Kozai T, Tsukagoshi S, Sakaguchi S (2018) Reconsidering the terminology and units for light and nutrient solution. In: Kozai T (ed) Smart plant factory: the next generation indoor vertical farms. Springer Nature Singapore Pte Ltd, p 188

    Google Scholar 

  • Langenfeld NJ, Pinto DF, Faust JE, Heins R, Bugbee B (2022) Principles of nutrient and water management for indoor agriculture. Sustainability 14:10204. https://doi.org/10.3390/su141610204

    Article  CAS  Google Scholar 

  • Maboko MM, du Plooy CP (2008) Effect of pruning on yield and quality of hydroponically grown cherry tomato (Lycopersicon esculentum). S Afr J Plant Soil 25:178–181. https://doi.org/10.1080/02571862.2008.10639914

    Article  Google Scholar 

  • Maboko MM, Du Plooy CP (2018) Yield response of hydroponically grown mustard spinach and non-heading Chinese cabbage to frequency of leaf harvest and flower removal. Int J Veg Sci 25:185–195

    Article  Google Scholar 

  • Maboko MM, Du Plooy CP, Bertling I (2011) Comparative performance of tomato cultivars cultivated in two hydroponic production systems. S Afr J Plant Soil 28(2):97–102

    Article  Google Scholar 

  • Maboko MM, Du Plooy CP, Chiloane S (2017) Yield of determinate tomato cultivars grown in a closed hydroponic system as affected by plant spacing. Hortic Bras 35:258–264

    Article  CAS  Google Scholar 

  • Mampholo BM, Maboko MM, Soundy P, Sivakumar D (2018) Variety-specific responses of lettuce grown in a gravel-film technique closed hydroponic system to N supply on yield, morphology, phytochemicals, mineral content and safety. J Int Agric 17(11):2447–2457

    Article  CAS  Google Scholar 

  • Marques DJ, Bianchini HC, Da Silva Lobato AK, Da Silver WF (2018) Potassium fertilization in the production of vegetables and fruits. Potassium - Improvement of Quality in Fruits and Vegetables Through Hydroponic Nutrient Management

    Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London

    Google Scholar 

  • Mayavan RRS, Jeganath R, Chamundeeswari V (2017) Automated hydroponic system for deep water culture to grow tomato using atmega328. In: Proceedings of Technoarete International Conference. Chennai, India

    Google Scholar 

  • Midmore D, Deng-lin W (1999) Work that water! Hydroponics made easy. Vol 17, No 4, April 1999

    Google Scholar 

  • Morales-Navarro S, Pérez-Díaz R, Ortega A, de Marcos A, Mena M, Fenoll C et al (2018) Overexpression of a SDD1-like gene from wild tomato decreases stomatal density and enhances dehydration avoidance in Arabidopsis and cultivated tomato. Front Plant Sci 9:940. https://doi.org/10.3389/fpls.2018.00940

    Article  Google Scholar 

  • Moremi M, Araya N (2021) Improving water use efficiency of recirculating hydroponic systems. ARC – VIMP Newsletter No 10: 1–19

    Google Scholar 

  • Nguyen VQ, Van HT, Le SH, Nguyen TH, Nguyen HT, Lan NT (2021) Production of hydroponic solution from human urine using adsorption–desorption method with coconut shell-derived activated carbon. Environ Technol Innov 23:101708

    Article  CAS  Google Scholar 

  • Niederwieser JG, Du Plooy CP (2014) Guide to hydroponic vegetable production in South Africa. Agricultural Research Council, Roodeplaat, Vegetable and Ornamental Plant Institute, Pretoria, South Africa

    Google Scholar 

  • Olfati JA, Khasmakhi-sabet SA, Shabani H (2012) Nutrient solutions on yield and quality of basil and cress. Int J Veg Sci 18:298–304. https://doi.org/10.1080/19315260.2011.642475

    Article  Google Scholar 

  • Pant P, Pandey S, Dall’Acqua S (2021) The influence of environmental conditions on secondary metabolites in medicinal plants: a literature review. Chem Biodivers 18:1–14. https://doi.org/10.1002/cbdv.202100345

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  Google Scholar 

  • Pennisi G, Orsini F, Blasioli S et al (2019) Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting. Sci Rep 9:14127. https://doi.org/10.1038/s41598-019-50783-z

    Article  CAS  Google Scholar 

  • Postma J, Geraats BPJ, Pastoor R, van Elsas JD (2005) Characterization of the microbial community involved in the suppression of Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology 95:808–818. https://doi.org/10.1094/PHYTO-95-0808

    Article  CAS  Google Scholar 

  • Pulela BL, Maboko MM, Soundy AP, Amoo SO (2020) Development, yield and quality of Cantaloupe and Honeydew melon in soilless culture in a non-temperature controlled high tunnel. Int J Veg Sci 1931:5279–5260. https://doi.org/10.1080/19315260.2020.1727075

    Article  Google Scholar 

  • Puspitahati M, Trianita R, Purnom H (2022) An NFT (Nutrient Film Technique) hydroponic irrigation system design using various gutter slopes on Pakcoy plants (Brassica rapa L.). IOP Conf Ser: Earth Environ Sci 995:1–5

    Google Scholar 

  • Putra PA, Yuliando H (2015) soilless culture system to support water use efficiency and product quality: a review. Agric Sci Procedia 3:283–288

    Google Scholar 

  • Raimondi G, Orsini F, Maggio A, De Pascale S, Barbieri G (2006) Yield and quality of hydroponically grown sweet basil cultivars. Acta Hortic 723:357–361

    Article  Google Scholar 

  • Ramírez-arias JA, Hernández-ibarra U, Pineda-pineda J, Fitz-rodríguez E (2018) Horizontal and vertical hydroponic systems for strawberry production at high densities. Acta Hortic 1227:331–338

    Article  Google Scholar 

  • Ratshitanga T (2017) Prospects for entrepreneurship in urban agriculture in Johannesburg. Masters Dissertation, University of Witwatersrand, Johannesburg

    Google Scholar 

  • Renata DSC, Bastos RG, Souza CF (2018) Influence of the use of wastewater on nutrient absorption and production of lettuce grown in a hydroponic system. Agric Water Manag 203:311–321

    Article  Google Scholar 

  • Resh HM (2022) The nutrient solution. Hydroponic food production, 8th edn. CRC Press, p 53

    Book  Google Scholar 

  • Rizk EK, Seidhom SH (2009) Improving water use efficiency of strawberry under some cultivation systems. ESAIJ 4(6):394–401

    Google Scholar 

  • Roberts JM, Bruce TJ, Monaghan JM, Pope TW, Leather SR, Beacham AM (2020) Vertical farming systems bring new considerations for pest and disease management. Ann Appl Biol 176:226–232. https://doi.org/10.1111/aab.12587

    Article  Google Scholar 

  • Rosa-Rodríguez R, Lara-herrera A, Trejo-téllez LI, Padilla-Bernal LE, Solis-Sánchez LO, Ortiz-Rodríguez JM (2020) Water and fertilizers use efficiency in two hydroponic systems for tomato production. Hortic Bras 38:47–52

    Article  Google Scholar 

  • Runia W, Amsing JJ (2001) Disinfection of recirculation water from closed cultivation systems by heat treatment. Acta Hortic 548:215–222

    Article  Google Scholar 

  • Saleem MS, Batool TS, Akbar MF, Raza S, Shahzad S (2019) Efficiency of botanical pesticides against some pest infesting hydroponic cucumber, cultivated under greenhouse conditions. Egypt J Biol Pest Control 29:37. https://doi.org/10.1186/s41938-019-0138-4

    Article  Google Scholar 

  • Samarakoon UC, Weersinghe PA, Weerakkody WAP (2006) Effect of electrical conductivity (EC) of the nutrient solution on nutrient uptake, growth and yield of leaf lettuce (Lactuca sativa L.) in stationary culture. Trop Agric Res 18:13–21

    Google Scholar 

  • Schnitzler WH (2004) Pest and disease management of soilless culture. Acta Horticulturae 648. https://doi.org/10.17660/ActaHortic.2004.648.23

  • Schueger AC, Hammer W (2003) Suppression of powdery mildew on greenhouse cucumber by addition of silicon to hydroponic nutrient solution is inhibited at high temperature. Plant Dis 87:177–185

    Article  Google Scholar 

  • Shai T, Maseko S, Basson L (2021) Market brief: green technologies for urban food production. GreenCape. Accessed 11 Dec 2022

    Google Scholar 

  • Sharma N, Acharya S, Kumar K, Singh N, Chaurasia OP (2018) Hydroponics as an advanced technique for vegetable production: an overview. JSWC 17(4):364–371

    Google Scholar 

  • Shtaya MJY, Qubbaj T (2022) Effect of different soilless agriculture methods on irrigation water saving and growth of lettuce (Lactuca sativa). Res 23(1):156–162

    Google Scholar 

  • Sihlongonyane SS (2020) Vertical hydroponic production of leafy vegetables with human-excreta-derived materials (HEDMs) from decentralised sanitation technologies. Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Agriculture, University of KwaZulu Natal., pp 1–97

    Google Scholar 

  • Singh MC, Singh KG, Singh JP (2019) Nutrient and water use efficiency of cucumbers grown in soilless media under a naturally ventilated greenhouse. J Agric Sci Technol 21:193–207

    Google Scholar 

  • Sonneveld C, Voogt W (2009) Plant nutrition of greenhouse crops. Springer, Dordrecht, p 403

    Book  Google Scholar 

  • Souza SV, Gimenesb R, Binottob M (2019) Economic viability for deploying hydroponic system in emerging countries: a differentiated risk adjustment proposal. Land Use Policy 83:357–369

    Article  Google Scholar 

  • Statistics South Africa (2023) Population growth in South Africa. https://www.statssa.gov.za. Accessed 03 Sep 2023

  • Suárez-Cáceres GP, Pérez-Urrestarazu L, Avilés M, Borerro C, Eguíbar JRL, Fernándes-Cabanás VM (2021) Susceptibility to water-borne plant diseases of hydroponic vs. aquaponics systems. Aquaculture 544:737093. https://doi.org/10.1016/j.aquaculture.2021.737093

    Article  CAS  Google Scholar 

  • Tohidloo G, Souri MK, Eskandarpour S (2018) Growth and fruit biochemical characteristics of three strawberry genotypes under different potassium concentrations of nutrient solution. Open Agric 3(1):356–362

    Article  Google Scholar 

  • Treftz C, Omaye ST (2015) Comparison between hydroponic and soil systems for growing strawberries in a greenhouse. Int J Agr Ext 03:195–200

    Google Scholar 

  • Velazquez-Gonzalez RS, Garcia-Garcia AL, Ventura-Zapata E, Barceinas-Sanchez JDO, Sosa-Savedra JC (2022) A review on hydroponics and the technologies associated for medium- and small-scale operations. Agriculture 12:646. https://doi.org/10.3390/agriculture12050646

    Article  CAS  Google Scholar 

  • Wang H, Jiang YP, Yu HJ, Xia XJ, Shi K, Zhou YH, Yu JQ (2010) Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants. Eur J Plant Pathol 127:125–135. https://doi.org/10.1007/s10658-009-9577-1

    Article  CAS  Google Scholar 

  • Whipps JM, Budge SP (2000) Effect of humidity on development of tomato powdery mildew (Oidium lycopersici) in the glasshouse. Eur J Plant Pathol 106:395–397

    Article  Google Scholar 

  • Yang T, Kim HJ (2020) Effects of hydraulic loading rate on spatial and temporal water quality characteristics and crop growth and yield in aquaponic systems. Hortic 6:9

    Article  Google Scholar 

  • Yang T, Samarakoon U, Altland J, Ling P (2021) Photosynthesis, biomass production, nutritional quality, and flavor-related phytochemical properties of hydroponic-grown arugula (Eruca sativa Mill.) ‘standard’ under different electrical conductivities of nutrient solution. Agronomy 11:1340

    Article  CAS  Google Scholar 

  • Yousaf M, Bashir S, Raza H, Shah AN, Iqbal J, Arif M, Bukhari MA, Muhammad S, Hashim S, Alkahtani J, Alwahibi MS, Hu C (2021) Role of nitrogen and magnesium for growth, yield and nutritional quality of radish. Saudi J Biol Sci 28(5):3021–3030

    Article  CAS  Google Scholar 

  • Zhang P, Senge P, Dai Y (2016) Effects of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Rev Agric 4:46–55

    Google Scholar 

  • Zhang D, Du Q, Zhang Z, Jiao X, Song X, Li J (2017) Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. Sci Rep 7:1–11

    Google Scholar 

  • Zhu P, Zhang C, Xiao H, Wang Y, Toyoda H, Xu L (2013) Exploitable regulatory effects of light on growth and development of Botrytis cinerea. J Plant Pathol 95:509–517

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Agricultural Research Council and the Water Research Commission through the implementation of project C2019/2020-00229 for supporting this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Alcina Araya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araya, N.A. et al. (2024). Sustainable Soilless Recirculating Hydroponics for Productive Use of Marginal Lands: A South African Context. In: Nciizah, A.D., Roopnarain, A., Ndaba, B., Malobane, M.E. (eds) The Marginal Soils of Africa. Springer, Cham. https://doi.org/10.1007/978-3-031-55185-7_15

Download citation

Publish with us

Policies and ethics