Skip to main content

Enhancement of Soil Arbuscular Mycorrhizal Fungi: A Step Towards Restoring Marginal Soils

  • Chapter
  • First Online:
The Marginal Soils of Africa

Abstract

Soil quality restoration and maintenance are fundamental to achieving food security for the world’s growing population. Despite the importance of soil quality in ensuring food security, most of the lands in Africa and the world at large are predominantly marginal soils. Their ubiquitousness makes them vital in efforts to bring about food security, despite being characterised by poor soil properties which threaten sustainable food production. Arbuscular mycorrhizal fungi (AMF) play an important role in enhancing soil quality and function. The collected literature shows that AMFs can enhance soil properties and crop yields even in marginal soils with soil organic carbon of less than 1%. The extent to which AMFs can enhance soil quality is, however, influenced by the soil type. The data also show that the application of a no-till approach, crop residue retention, crop rotation and organic amendments can improve AMF abundance and diversity even in marginal soils. The conclusion reached, is that AMF have the potential to enhance soil quality and function, thus leading to increased food security. Admittedly, local studies on the best practices to enhance soil AMFs are still needed in Africa, especially under smallholder conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullahi R, Lihan S, Edward R, Demie LS (2015) Effect of arbuscular mycorrhizal fungi and poultry manure on growth and nutrients contents of maize in different soil types. J Adv Agric 4(2):427–437

    Google Scholar 

  • Abou El-Gould AK (2020) Organic watermelon production by smart agritechnique using organic fertilizers, Vermitea levels and AMF in poor nutrients soil. Plant Arch 20(2):4107–4116

    Google Scholar 

  • Agnihotri R, Sharma MP, Prakash A, Ramesh A, Bhattacharjya S, Patra AK, Manna MC, Kurganova I, Kuzyakov Y (2022) Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: review of mechanisms and controls. Sci Total Environ 806:150571

    Article  CAS  Google Scholar 

  • Ahmadzai H, Tutundjian S, Elouafi I (2021) Policies for sustainable agriculture and livelihood in marginal lands: a review. Sustainability 13(16):8692

    Article  Google Scholar 

  • Ai YJ, Li FP, Yang JQ, Lu S, Gu HH (2022) Research progress and potential functions of AMF and GRSP in the ecological remediation of metal tailings. Sustainability 14(15):9611

    Article  Google Scholar 

  • Al-Amri SM (2021) Application of bio-fertilizers for enhancing growth and yield of common bean plants grown under water stress conditions. Saudi J Biol Sci 28(7):3901–3908

    Article  CAS  Google Scholar 

  • Alguacil MM, Torrecillas E, García-Orenes F, Roldán A (2014) Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. Soil Biol Biochem 76:34–44

    Article  CAS  Google Scholar 

  • Andrews SS, Karlen DL, Mitchell JP (2002) A comparison of soil quality indexing methods for vegetable production systems in northern California. Agric Ecosyst Environ 90(1):25–45

    Article  Google Scholar 

  • Andrino A, Guggenberger G, Kernchen S, Mikutta R, Sauheitl L, Boy J (2021) Production of organic acids by arbuscular mycorrhizal fungi and their contribution in the mobilization of phosphorus bound to iron oxides. Front Plant Sci 12:661842

    Article  Google Scholar 

  • Arif I, Batool M, Schenk PM (2020) Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends Biotechnol 38(12):1385–1396

    Article  CAS  Google Scholar 

  • Bakhshandeh S, Corneo PE, Mariotte P, Kertesz MA, Dijkstra FA (2017) Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agric Ecosyst Environ 247:130–136

    Article  Google Scholar 

  • Barna G, Makó A, Takács T, Skic K, Füzy A, Horel Á (2020) Biochar alters soil physical characteristics, arbuscular mycorrhizal fungi colonization, and glomalin production. Agronomy 10(12):1933

    Article  CAS  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068

    Article  Google Scholar 

  • Benaffari W, Boutasknit A, Anli M, Ait-El-Mokhtar M, Ait-Rahou Y, Ben-Laouane R, Ben Ahmed H, Mitsui T, Baslam M, Meddich A (2022) The native arbuscular mycorrhizal fungi and vermicompost-based organic amendments enhance soil fertility, growth performance, and the drought stress tolerance of quinoa. Plants 11(3):393

    Article  CAS  Google Scholar 

  • Bertham RR, Arifin Z, Nusantara AD (2019) The improvement of yield and quality of soybeans in a coastal area using low input technology based on biofertilizers. Int J Adv Sci Eng Inf Technol 9(3):787–791

    Article  Google Scholar 

  • Bertola M, Ferrarini A, Visioli G (2021) Improvement of soil microbial diversity through sustainable agricultural practices and its evaluation by-omics approaches: a perspective for the environment, food quality and human safety. Microorganisms 9(7):1400

    Article  CAS  Google Scholar 

  • Bhantana P (2021) Role of mycorrhizal pathways in plant phosphorous and zinc uptake. Biomed J Sci Tech Res 36(2)

    Google Scholar 

  • Bhattacharyya SS, Leite FFGD, France CL, Adekoya AO, Ros GH, de Vries W, Melchor-Martínez EM, Iqbal HM, Parra-Saldívar R (2022) Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Sci Total Environ:154161

    Google Scholar 

  • Boilard G, Bradley RL, Paterson E, Sim A, Brown LK, George TS, Bainard L, Carubba A (2019) Interaction between root hairs and soil phosphorus on rhizosphere priming of soil organic matter. Soil Biol Biochem 135:264–266

    Article  CAS  Google Scholar 

  • Borie F, Rubio R, Morales A (2008) Arbuscular mycorrhizal fungi and soil aggregation. Revista de la ciencia del suelo y nutrición vegetal 8(2):9–18

    Article  Google Scholar 

  • Borrelli P, Robinson DA, Panagos P, Lugato E, Yang JE, Alewell C, Wuepper D, Montanarella L, Ballabio C (2020) Land use and climate change impacts on global soil erosion by water (2015–2070). Proc Natl Acad Sci 117(36):21994–22001

    Article  CAS  Google Scholar 

  • Bouma J, Montanarella L, Evanylo G (2019) The challenge for the soil science community to contribute to the implementation of the UN Sustainable Development Goals. Soil Use Manag 35(4):538–546

    Article  Google Scholar 

  • Burghelea CI, Dontsova K, Zaharescu DG, Maier RM, Huxman T, Amistadi MK, Hunt E, Chorover J (2018) Trace element mobilization during incipient bioweathering of four rock types. Geochim Cosmochim Acta 234:98–114

    Article  CAS  Google Scholar 

  • Caruso C, Maucieri C, Cavallaro V, Borin M, Barbera AC (2018) Olive mill wastewater spreading and AMF inoculation effects in a low-input semi-arid Mediterranean crop succession. Arch Agron Soil Sci 64(14):2060–2074

    Article  Google Scholar 

  • Chandrasekaran M (2022) Arbuscular mycorrhizal fungi mediated enhanced biomass, root morphological traits and nutrient uptake under drought stress: a meta-analysis. J Fungi 8(7):660

    Article  CAS  Google Scholar 

  • Chandrasekaran M, Boopathi T, Manivannan P (2021) Comprehensive assessment of ameliorative effects of AMF in alleviating abiotic stress in tomato plants. J Fungi 7(4):303

    Article  CAS  Google Scholar 

  • Chen M, Li Y, Jiang X, Zhao D, Liu X, Zhou J, He Z, Zheng C, Pan X (2021) Study on soil physical structure after the bioremediation of Pb pollution using microbial-induced carbonate precipitation methodology. J Hazard Mater 411:125103

    Article  CAS  Google Scholar 

  • Cobb AB, Wilson GW, Goad CL, Bean SR, Kaufman RC, Herald TJ, Wilson JD (2016) The role of arbuscular mycorrhizal fungi in grain production and nutrition of sorghum genotypes: enhancing sustainability through plant-microbial partnership. Agric Ecosyst Environ 233:432–440

    Article  Google Scholar 

  • Costa OY, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636

    Article  Google Scholar 

  • Dagher DJ, de la Providencia IE, Pitre FE, St-Arnaud M, Hijri M (2020) Arbuscular mycorrhizal fungal assemblages significantly shifted upon bacterial inoculation in non-contaminated and petroleum-contaminated environments. Microorganisms 8(4):602

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7(1):1–8

    Article  Google Scholar 

  • Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S (2020) Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity 12(10):370

    Article  CAS  Google Scholar 

  • Eke P, Wakam LN, Fokou PVT, Ekounda TV, Sahu KP, Wankeu THK, Boyom FF (2019) Improved nutrient status and Fusarium root rot mitigation with an inoculant of two biocontrol fungi in the common bean (Phaseolus vulgaris L.). Rhizosphere 12:100172

    Article  Google Scholar 

  • El-Sawah AM, El-Keblawy A, Ali DFI, Ibrahim HM, El-Sheikh MA, Sharma A, Alhaj Hamoud Y, Shaghaleh H, Brestic M, Skalicky M, Xiong YC (2021) Arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria enhance soil key enzymes, plant growth, seed yield, and qualitative attributes of guar. Agriculture 11(3):194

    Article  CAS  Google Scholar 

  • El-Sherbeny TMS, Mousa AM, El-Sayed ESR (2022) Use of mycorrhizal fungi and phosphorus fertilization to improve the yield of onion (Allium cepa L.) plant. Saudi J Biol Sci 29(1):331–338

    Article  CAS  Google Scholar 

  • Evans DL, Janes-Bassett V, Borrelli P, Chenu C, Ferreira CS, Griffiths RI, Kalantari Z, Keesstra S, Lal R, Panagos P, Robinson DA (2022) Sustainable futures over the next decade are rooted in soil science. Eur J Soil Sci 73(1):e13145

    Article  Google Scholar 

  • Ezzati Lotfabadi Z, Weisany W, Abdul-Razzak Tahir N, Mohammadi Torkashvand A (2022) Arbuscular mycorrhizal fungi species improve the fatty acids profile and nutrients status of soybean cultivars grown under drought stress. J Appl Microbiol 132(3):2177–2188

    Article  CAS  Google Scholar 

  • Fall AF, Nakabonge G, Ssekandi J, Founoune-Mboup H, Apori SO, Ndiaye A, Badji A, Ngom K (2022) Roles of arbuscular mycorrhizal fungi on soil fertility: contribution in the improvement of physical, chemical, and biological properties of the soil. Front Fungal Biol 3:723892. https://doi.org/10.3389/ffunb.2022.723892

    Article  Google Scholar 

  • FAO (2015) Healthy soils are the basis for healthy food production. https://www.fao.org/3/i4405e/I4405E.pdf. Accessed 23 Oct 2022

  • Fraser ED (2020) The challenge of feeding a diverse and growing population. Physiol Behav 221:112908

    Article  CAS  Google Scholar 

  • Gao X, Guo H, Zhang Q, Guo H, Zhang L, Zhang C, Gou Z, Liu Y, Wei J, Chen A, Chu Z (2020) Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Sci Rep 10(1):1–12

    Google Scholar 

  • Gu S, Wu S, Guan Y, Zhai C, Zhang Z, Bello A, Guo X, Yang W (2020) Arbuscular mycorrhizal fungal community was affected by tillage practices rather than residue management in black soil of northeast China. Soil Tillage Res 198:104552

    Article  Google Scholar 

  • Hagh-Doust N, Färkkilä SM, Hosseyni Moghaddam MS, Tedersoo L (2022) Symbiotic fungi as biotechnological tools: methodological challenges and relative benefits in agriculture and forestry. Fungal Biol Rev:1–22

    Google Scholar 

  • Hashem A, Tabassum B, Abd’Allah EF (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26(6):1291–1297

    Article  CAS  Google Scholar 

  • He Y, Xu C, Huang R, Guo M, Lin L, Yu Y, Wang Y (2019) Variation of soil aggregates in response to soil water under short-term natural rainfalls at different land use. SN Appl Sci 1(8):1–12

    Article  CAS  Google Scholar 

  • Helgason BL, Walley FL, Germida JJ (2010) No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl Soil Ecol 46(3):390–397

    Article  Google Scholar 

  • Horwath WR (2017) The role of the soil microbial biomass in cycling nutrients. In: Microbial biomass: a paradigm shift in terrestrial biogeochemistry, pp 41–66. https://doi.org/10.1002/ldr.4192

    Chapter  Google Scholar 

  • Igiehon NO, Babalola OO (2017) Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 101(12):4871–4881

    Article  CAS  Google Scholar 

  • Indriana KR, Suherman C, Rosniawaty S (2021) Combination of Jatropha cultivars with the best dose fungi mycorrhizal arbuscular and cytokinin concentrations for lowland plant. Educ Res (IJMCER) 3(1):202–208

    Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition – current knowledge and future directions. Front Plant Sci 8:1617

    Article  Google Scholar 

  • Jaison S, Uma E, Muthukumar T (2011) Role of organic amendments on arbuscular mycorrhizal formation and function. Soil Microbes Environ Health:217–237

    Google Scholar 

  • Jajoo A, Mathur S (2021) Role of arbuscular mycorrhizal fungi as an underground saviour for protecting plants from abiotic stresses. Physiol Mol Biol Plants 27(11):2589–2603

    Article  CAS  Google Scholar 

  • Jeewani PH, Luo Y, Yu G, Fu Y, He X, van Zwieten L, Liang C, Kumar A, He Y, Kuzyakov Y, Qin H (2021) Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions. Soil Biol Biochem 162:108417

    Article  CAS  Google Scholar 

  • Ji L, Tan W, Chen X (2019) Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in Calcaric Regosol under well-watered and drought stress conditions. Soil Tillage Res 185:1–8

    Article  Google Scholar 

  • Jiang S, An X, Shao Y, Kang Y, Chen T, Mei X, Dong C, Xu Y, Shen Q (2021) Responses of arbuscular mycorrhizal fungi occurrence to organic fertilizer: a meta-analysis of field studies. Plant Soil 469(1):89–105

    Article  CAS  Google Scholar 

  • Jiao S, Xu Y, Zhang J, Hao X, Lu Y (2019) Core microbiota in agricultural soils and their potential associations with nutrient cycling. Msystems 4(2):e00313–e00318

    Article  CAS  Google Scholar 

  • Joniec J (2018) Enzymatic activity as an indicator of regeneration processes in degraded soil reclaimed with various types of waste. Int J Environ Sci Technol 15(10):2241–2252

    Article  CAS  Google Scholar 

  • Khaliq A, Perveen S, Alamer KH, Zia Ul Haq M, Rafique Z, Alsudays IM, Althobaiti AT, Saleh MA, Hussain S, Attia H (2022) Arbuscular mycorrhizal fungi symbiosis to enhance plant–soil interaction. Sustainability 14(13):7840

    Article  CAS  Google Scholar 

  • Khan Y, Shah S, Hui T (2022) The roles of arbuscular mycorrhizal fungi in influencing plant nutrients, photosynthesis, and metabolites of cereal crops: a review. Agronomy 12(9):2191

    Article  CAS  Google Scholar 

  • Khosro M, Gholamreza H, Shiva K, Yousef S (2011) Soil management, microorganisms and organic matter interactions: a review. Afr J Biotechnol 10(86):19840–19849

    Google Scholar 

  • Kohler-Milleret R, le Bayon RC, Chenu C, Gobat JM, Boivin P (2013) Impact of two root systems, earthworms and mycorrhizae on the physical properties of an unstable silt loam Luvisol and plant production. Plant Soil 370(1):251–265

    Article  CAS  Google Scholar 

  • Koza NA, Adedayo AA, Babalola OO, Kappo AP (2022) Microorganisms in plant growth and development: roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms 10(8):1528

    Article  CAS  Google Scholar 

  • Kuang W, Liu J, Tian H, Shi H, Dong J, Song C, Li X, Du G, Hou Y, Lu D, Chi W (2022) Cropland redistribution to marginal lands undermines environmental sustainability. Natl Sci Rev 9(1):nwab091

    Article  Google Scholar 

  • Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP (2020) Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Front Microbiol 11:1216

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627

    Article  CAS  Google Scholar 

  • Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7(5):5875–5895

    Article  Google Scholar 

  • Lal R (2020) Soil quality and sustainability. In: Methods for assessment of soil degradation. CRC Press, pp 17–30

    Chapter  Google Scholar 

  • Lal R, Negassa W, Lorenz K (2015) Carbon sequestration in soil. Curr Opin Environ Sustain 15:79–86

    Article  Google Scholar 

  • Lal R, Brevik EC, Dawson L, Field D, Glaser B, Hartemink AE, Hatano R, Lascelles B, Monger C, Scholten T, Singh BR (2020) Managing soils for recovering from the Covid-19 pandemic. Soil Syst 4(3):46

    Article  CAS  Google Scholar 

  • Lal R, Bouma J, Brevik E, Dawson L, Field DJ, Glaser B, Hatano R, Hartemink AE, Kosaki T, Lascelles B, Monger C (2021) Soils and sustainable development goals of the United Nations: an International Union of Soil Sciences perspective. Geoderma Reg 25:e00398

    Article  Google Scholar 

  • Lee SJ, Kong M, St-Arnaud M, Hijri M (2020) Arbuscular mycorrhizal fungal communities of native plant species under high petroleum hydrocarbon contamination highlights Rhizophagus as a key tolerant genus. Microorganisms 8(6):872

    Article  CAS  Google Scholar 

  • Lehmann J, Hansel CM, Kaiser C, Kleber M, Maher K, Manzoni S, Nunan N, Reichstein M, Schimel JP, Torn MS, Wieder WR (2020) Persistence of soil organic carbon caused by functional complexity. Nat Geosci 13(8):529–534

    Article  CAS  Google Scholar 

  • Lenoir I, Lounes-Hadj Sahraoui A, Fontaine J (2016) Arbuscular mycorrhizal fungal-assisted phytoremediation of soil contaminated with persistent organic pollutants: a review. Eur J Soil Sci 67(5):624–640

    Article  Google Scholar 

  • Li Y, Sun LL, Sun YY, Cha QQ, Li CY, Zhao DL, Song XY, Wang M, McMinn A, Chen XL, Zhang YZ (2019) Extracellular enzyme activity and its implications for organic matter cycling in northern Chinese marginal seas. Front Microbiol 10:2137

    Article  Google Scholar 

  • Lilleskov EA, Kuyper TW, Bidartondo MI, Hobbie EA (2019) Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review. Environ Pollut 246:148–162

    Article  CAS  Google Scholar 

  • Liu TT, McConkey BG, Ma ZY, Liu ZG, Li X, Cheng LL (2011) Strengths, weaknesses, opportunities and threats analysis of bioenergy production on marginal land. Energy Procedia 5:2378–2386

    Article  Google Scholar 

  • Liu M, Han G, Zhang Q (2019) Effects of soil aggregate stability on soil organic carbon and nitrogen under land use change in an erodible region in Southwest China. Int J Environ Res Public Health 16(20):3809

    Article  CAS  Google Scholar 

  • Liu J, Zhang J, Li D, Xu C, Xiang X (2020) Differential responses of arbuscular mycorrhizal fungal communities to mineral and organic fertilization. Microbiol Open 9(1):e00920

    Article  Google Scholar 

  • Liu C, Song Y, Dong X, Wang X, Ma X, Zhao G, Zang S (2021) Soil enzyme activities and their relationships with soil C, N, and P in peatlands from different types of permafrost regions, Northeast China. Front Environ Sci:143

    Google Scholar 

  • Liu W, Ma K, Wang X, Wang Z, Negrete-Yankelevich S (2022) Effects of no-tillage and biologically based organic fertilizer on soil arbuscular mycorrhizal fungal communities in winter wheat field. Appl Soil Ecol 178:104564

    Article  Google Scholar 

  • Lombardo S, Abbate C, Pandino G, Parisi B, Scavo A, Mauromicale G (2020) Productive and physiological response of organic potato grown under highly calcareous soils to fertilization and mycorrhization management. Agronomy 10(8):1200

    Article  CAS  Google Scholar 

  • Lori M, Symnaczik S, Mäder P, de Deyn G, Gattinger A (2017) Organic farming enhances soil microbial abundance and activity: a meta-analysis and meta-regression. PloS One 12(7):e0180442

    Article  Google Scholar 

  • Lu FC, Lee CY, Wang CL (2015) The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content. PeerJ 3:e1266

    Article  Google Scholar 

  • Luo S, Wang S, Tian L, Li S, Li X, Shen Y, Tian C (2017) Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Appl Soil Ecol 117:10–15

    Article  Google Scholar 

  • Mącik M, Gryta A, Frąc M (2020) Biofertilizers in agriculture: an overview of concepts, strategies and effects on soil microorganisms. Adv Agron 162:31–87

    Article  Google Scholar 

  • Macke J, Bozhikin I, Sarate JAR (2021) Feeding a growing population without deforestation: agroforestry system partnerships and mechanisms. Agrofor Syst 95(4):687–706

    Article  Google Scholar 

  • Maisonet-Guzman OE (2011) Food security and population growth in the 21st century. E-Int Relat 18:1–10

    Google Scholar 

  • Malhi GS, Kaur M, Kaushik P, Alyemeni MN, Alsahli AA, Ahmad P (2021) Arbuscular mycorrhiza in combating abiotic stresses in vegetables: an eco-friendly approach. Saudi J Biol Sci 28(2):1465–1476

    Article  CAS  Google Scholar 

  • Malobane ME, Nciizah AD, Mudau FN, Wakindiki II (2020) Tillage, crop rotation and crop residue management effects on nutrient availability in a sweet sorghum-based cropping system in marginal soils of South Africa. Agronomy 10(6):776

    Article  CAS  Google Scholar 

  • Malobane ME, Nciizah AD, Bam LC, Mudau FN, Wakindiki IIC (2021) Soil microstructure as affected by tillage, rotation and residue management in a sweet sorghum-based cropping system in soils with low organic carbon content in South Africa. Soil Tillage Res 209:104972

    Article  Google Scholar 

  • Mandiringana OT, Mnkeni PNS, Mkile Z, van Averbeke W, van Ranst E, Verplancke H (2005) Mineralogy and fertility status of selected soils of the Eastern Cape province, South Africa. Commun Soil Sci Plant Anal 36(17/18):2431–2446

    Article  CAS  Google Scholar 

  • Marro N, Cofre N, Grilli G, Alvarez C, Labuckas D, Maestri D, Urcelay C (2020) Soybean yield, protein content and oil quality in response to interaction of arbuscular mycorrhizal fungi and native microbial populations from mono-and rotation-cropped soils. Appl Soil Ecol 152:103575

    Article  Google Scholar 

  • Mehmood MA, Ibrahim M, Rashid U, Nawaz M, Ali S, Hussain A, Gull M (2017) Biomass production for bioenergy using marginal lands. Sustain Prod Consum 9:3–21

    Article  Google Scholar 

  • Mohamed HI, Sofy MR, Almoneafy AA, Abdelhamid MT, Basit A, Sofy AR, Lone R, Abou-El-Enain MM (2021) Role of microorganisms in managing soil fertility and plant nutrition in sustainable agriculture. In: Plant growth-promoting microbes for sustainable biotic and abiotic stress management. Springer, Cham, pp 93–114

    Chapter  Google Scholar 

  • Montanarella L, Alva IL (2015) Putting soils on the agenda: the three Rio conventions and the post-2015 development agenda. Curr Opin Environ Sustain 15:41–48

    Article  Google Scholar 

  • Morimoto S, Uchida T, Matsunami H, Kobayashi H (2018) Effect of winter wheat cover cropping with no-till cultivation on the community structure of arbuscular mycorrhizal fungi colonizing the subsequent soybean. Soil Sci Plant Nutr 64(5):545–553

    Article  Google Scholar 

  • Naab JB, Mahama GY, Yahaya I, Prasad PVV (2017) Conservation agriculture improves soil quality, crop yield, and incomes of smallholder farmers in North-Western Ghana. Front Plant Sci 8:996

    Article  Google Scholar 

  • Nabel M, Temperton VM, Poorter H, Lücke A, Jablonowski ND (2016) Energizing marginal soils: the establishment of the energy crop Sida hermaphrodita as dependent on digestate fertilization, NPK, and legume intercropping. Biomass Bioenergy 87:9–16

    Article  Google Scholar 

  • Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J (2020) Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Sci Total Environ 743:140682

    Article  Google Scholar 

  • Orrù L, Canfora L, Trinchera A, Migliore M, Pennelli B, Marcucci A, Farina R, Pinzari F (2021) How tillage and crop rotation change the distribution pattern of fungi. Front Microbiol 12:634325

    Article  Google Scholar 

  • Ortas I, Bilgili G (2022) Mycorrhizal species selectivity of sweet sorghum genotypes and their effect on nutrients uptake. Acta Agric Scand Sect B – Soil Plant Sci 72(1):733–743

    CAS  Google Scholar 

  • Paranavithana TM, Marasinghe S, Perera GAD, Ratnayake RR (2021) Effects of crop rotation on enhanced occurrence of arbuscular mycorrhizal fungi and soil carbon stocks of lowland paddy fields in seasonally dry tropics. Paddy Water Environ 19(1):217–226

    Article  Google Scholar 

  • Parihar M, Rakshit A, Meena VS, Gupta VK, Rana K, Choudhary M, Tiwari G, Mishra PK, Pattanayak A, Bisht JK, Jatav SS (2020) The potential of arbuscular mycorrhizal fungi in C cycling: a review. Arch Microbiol 202(7):1581–1596

    Article  CAS  Google Scholar 

  • Pascale A, Proietti S, Pantelides IS, Stringlis IA (2020) Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front Plant Sci 10:1741

    Article  Google Scholar 

  • Pulighe G, Bonati G, Colangeli M, Morese MM, Traverso L, Lupia F, Khawaja C, Janssen R, Fava F (2019) Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions. Renew Sustain Energy Rev 103:58–70

    Article  Google Scholar 

  • Qi S, Wang J, Wan L, Dai Z, da Silva Matos DM, Du D, Egan S, Bonser SP, Thomas T, Moles AT (2022) Arbuscular mycorrhizal fungi contribute to phosphorous uptake and allocation strategies of Solidago canadensis in a phosphorous-deficient environment. Front Plant Sci 13

    Google Scholar 

  • Qin H, Lu K, Strong PJ, Xu Q, Wu Q, Xu Z, Xu J, Wang H (2015) Long-term fertilizer application effects on the soil, root arbuscular mycorrhizal fungi and community composition in rotation agriculture. Appl Soil Ecol 89:35–43

    Article  Google Scholar 

  • Qin H, Chen J, Wu Q, Niu L, Li Y, Liang C, Shen Y, Xu Q (2017) Intensive management decreases soil aggregation and changes the abundance and community compositions of arbuscular mycorrhizal fungi in Moso bamboo (Phyllostachys pubescens) forests. Forest Ecol Manag 400:246–255

    Article  Google Scholar 

  • Qin M, Zhang Q, Pan J, Jiang S, Liu Y, Bahadur A, Peng Z, Yang Y, Feng H (2020) Effect of arbuscular mycorrhizal fungi on soil enzyme activity is coupled with increased plant biomass. Eur J Soil Sci 71(1):84–92

    Article  CAS  Google Scholar 

  • Qiu L, Bi Y, Jiang B, Wang Z, Zhang Y, Zhakypbek Y (2019) Arbuscular mycorrhizal fungi ameliorate the chemical properties and enzyme activities of rhizosphere soil in reclaimed mining subsidence in northwestern China. J Arid Land 11(1):135–147

    Article  Google Scholar 

  • Raymond NS, Gómez-Muñoz B, van der Bom FJ, Nybroe O, Jensen LS, Müller-Stöver DS, Oberson A, Richardson AE (2021) Phosphate-solubilising microorganisms for improved crop productivity: a critical assessment. New Phytol 229(3):1268–1277

    Article  CAS  Google Scholar 

  • Ren CG, Kong CC, Wang SX, Xie ZH (2019a) Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Chemosphere 217:773–779

    Article  CAS  Google Scholar 

  • Ren L, Wang B, Yue C, Zhou S, Zhang S, Huo H, Xu G (2019b) Mechanism of application nursery cultivation arbuscular mycorrhizal seedling in watermelon in the field. Ann Appl Biol 174(1):51–60

    Article  Google Scholar 

  • Reusser JE, Tamburini F, Neal AL, Verel R, Frossard E, McLaren TI (2022) The molecular size continuum of soil organic phosphorus and its chemical associations. Geoderma 412:115716

    Article  CAS  Google Scholar 

  • Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X (2021) Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J Hazard Mater 402:123919

    Article  CAS  Google Scholar 

  • Riaz M, Azhar MT, Kamran M, Aziz O, Wang X (2022) Role of arbuscular mycorrhizal fungi in plant phosphorus acquisition for sustainable agriculture. Sustain Agric Rev:155–176

    Google Scholar 

  • Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS (2019) Seed coating: a tool for delivering beneficial microbes to agricultural crops. Front Plant Sci 10:1357

    Article  Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, de Pascale S, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108

    Article  Google Scholar 

  • Sabia E, Claps S, Morone G, Bruno A, Sepe L, Aleandri R (2015) Field inoculation of arbuscular mycorrhiza on maize (Zea mays L.) under low inputs: preliminary study on quantitative and qualitative aspects. Ital J Agron 10(1):30–33

    Article  Google Scholar 

  • Saboor A, Ali MA, Danish S, Ahmed N, Fahad S, Datta R, Ansari MJ, Nasif O, Glick BR (2021) Effect of arbuscular mycorrhizal fungi on the physiological functioning of maize under zinc-deficient soils. Sci Rep 11(1):1–11

    Article  Google Scholar 

  • Sarah S, Burni T, Shuaib M, Alzahrani Y, Alsamadany H, Jan F, Khan S (2019) Symbiotic response of three tropical maize varieties to eco-friendly arbuscular mycorrhizal fungal inoculation in marginal soil. Biocell 43(5/1):245–252

    Google Scholar 

  • Saurabh K, Rao KK, Mishra JS, Kumar R, Poonia SP, Samal SK, Roy HS, Dubey AK, Choubey AK, Mondal S, Bhatt BP (2021) Influence of tillage-based crop establishment and residue management practices on soil quality indices and yield sustainability in rice-wheat cropping system of eastern Indo-Gangetic Plains. Soil Tillage Res 206:104841

    Article  Google Scholar 

  • Sellitto VM, Golubkina NA, Pietrantonio L, Cozzolino E, Cuciniello A, Cenvinzo V, Florin I, Caruso G (2019) Tomato yield, quality, mineral composition and antioxidants as affected by beneficial microorganisms under soil salinity induced by balanced nutrient solutions. Agriculture 9(5):110

    Article  CAS  Google Scholar 

  • Shahid SA, Al-Shankiti A (2013) Sustainable food production in marginal lands – case of GDLA member countries. Int Soil Water Conserv Res 1(1):24–38

    Article  Google Scholar 

  • Sharma M, Delta AK, Dhanda PS, Kaushik P, Mohanta YK, Saravanan M, Mohanta TK (2022a) AMF and PSB applications modulated the biochemical and mineral content of the eggplants. J Basic Microbiol 62(11):1371–1378

    Article  CAS  Google Scholar 

  • Sharma M, Delta AK, Kaushik P (2022b) Response of Yam (Dioscorea alata) to the application of rhizophagus irregularis and potassium silicate under salinity stress. Stresses 2(2):234–241

    Article  Google Scholar 

  • Sheteiwy MS, Ali DFI, Xiong YC, Brestic M, Skalicky M, Hamoud YA, Ulhassan Z, Shaghaleh H, AbdElgawad H, Farooq M, Sharma A (2021) Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol 21(1):1–21

    Article  Google Scholar 

  • Sidhu GPS, Bali AS, Bhardwaj R (2019) Use of fungi in mitigating cadmium toxicity in plants. In: Cadmium toxicity and tolerance in plants. Academic Press, pp 397–426

    Chapter  Google Scholar 

  • Singh AK, Rai A, Pandey V, Singh N (2017) Contribution of glomalin to dissolve organic carbon under different land uses and seasonality in dry tropics. J Environ Manag 192:142–149

    Article  CAS  Google Scholar 

  • Singh A, Kumari R, Yadav AN, Mishra S, Sachan A, Sachan SG (2020) Tiny microbes, big yields: microorganisms for enhancing food crop production for sustainable development. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 1–15

    Google Scholar 

  • Singh AK, Zhu X, Chen C, Wu J, Yang B, Zakari S, Jiang XJ, Singh N, Liu W (2022) The role of glomalin in mitigation of multiple soil degradation problems. Crit Rev Environ Sci Technol 52(9):1604–1638

    Article  CAS  Google Scholar 

  • Stürmer SL (2012) A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza 22(4):247–258

    Article  Google Scholar 

  • Stürmer SL, Kemmelmeier K (2021) The Glomeromycota in the neotropics. Front Microbiol 11:553679

    Article  Google Scholar 

  • Syamsiyah J, Herawati A (2018) The potential of arbuscular mycorrhizal fungi application on aggregate stability in Alfisol soil. In: IOP Conference Series: Earth and Environmental Science, vol 142, p 12045

    Google Scholar 

  • Thapa B, Mowrer J (2022) Effects of carbon amendments, tillage and cover cropping on arbuscular mycorrhizal fungi association and root architecture in corn and cotton crop sequence. Agronomy 12(9):2185

    Article  CAS  Google Scholar 

  • Tomer A, Singh R, Singh SK, Dwivedi SA, Reddy CU, Keloth MR, Rachel R (2021) Role of fungi in bioremediation and environmental sustainability. Fungal Biol:187–200

    Google Scholar 

  • Turmel MS, Speratti A, Baudron F, Verhulst N, Govaerts B (2015) Crop residue management and soil health: a systems analysis. Agric Syst 134:6–16

    Article  Google Scholar 

  • Ullah A, Nisar M, Ali H, Hazrat A, Hayat K, Keerio AA, Ihsan M, Laiq M, Ullah S, Fahad S, Khan A (2019) Drought tolerance improvement in plants: an endophytic bacterial approach. Appl Microbiol Biotechnol 103(18):7385–7397

    Article  CAS  Google Scholar 

  • Wahdan SFM, Reitz T, Heintz-Buschart A, Schädler M, Roscher C, Breitkreuz C, Schnabel B, Purahong W, Buscot F (2021) Organic agricultural practice enhances arbuscular mycorrhizal symbiosis in correspondence to soil warming and altered precipitation patterns. Environ Microbiol 23(10):6163–6176

    Article  Google Scholar 

  • Wang ZG, Bi YL, Jiang B, Zhakypbek Y, Peng SP, Liu WW, Liu H (2016) Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest China. Sci Rep 6(1):1–11

    Google Scholar 

  • Wang Q, Hong H, Liao R, Yuan B, Li H, Lu H, Liu J, Yan C (2021a) Glomalin-related soil protein: the particle aggregation mechanism and its insight into coastal environment improvement. Ecotoxicol Environ Saf 227:112940

    Article  CAS  Google Scholar 

  • Wang L, Liu Y, Zhu X, Zhang Y, Yang H, Dobbie S, Zhang X, Deng A, Qian H, Zhang W (2021b) Effects of arbuscular mycorrhizal fungi on crop growth and soil N2O emissions in the legume system. Agric Ecosyst Environ 322:107641

    Article  CAS  Google Scholar 

  • Wang L, Chen X, Du Y, Zhang D, Tang Z (2022) Nutrients regulate the effects of arbuscular mycorrhizal fungi on the growth and reproduction of cherry tomato. Front Microbiol 13

    Google Scholar 

  • Watts-Williams SJ, Gill AR, Jewell N, Brien CJ, Berger B, Tran BT, Mace E, Cruickshank AW, Jordan DR, Garnett T, Cavagnaro TR (2021) Enhancement of sorghum grain yield and nutrition: a role for arbuscular mycorrhizal fungi regardless of soil phosphorus availability. Plants People Planet 4(2):143–156

    Article  Google Scholar 

  • Wu J, Miao C, Zhang X, Yang T, Duan Q (2017) Detecting the quantitative hydrological response to changes in climate and human activities. Sci Total Environ 586:328–337

    Article  CAS  Google Scholar 

  • Wu F, You Y, Werner D, Jiao S, Hu J, Zhang X, Wan Y, Liu J, Wang B, Wang X (2020) Carbon nanomaterials affect carbon cycle-related functions of the soil microbial community and the coupling of nutrient cycles. J Hazard Mater 390:122144

    Article  CAS  Google Scholar 

  • Wu S, Shi Z, Chen X, Gao J, Wang X (2022) Arbuscular mycorrhizal fungi increase crop yields by improving biomass under rainfed condition: a meta-analysis. PeerJ 10:e12861

    Article  Google Scholar 

  • Xiang X, Liu J, Zhang J, Li D, Xu C, Kuzyakov Y (2020) Divergence in fungal abundance and community structure between soils under long-term mineral and organic fertilization. Soil Tillage Res 196:104491

    Article  Google Scholar 

  • Yadav RS, Mahatma MK, Thirumalaisamy PP, Meena HN, Bhaduri D, Arora S, Panwar J (2017) Arbuscular mycorrhizal fungi (AMF) for sustainable soil and plant health in salt-affected soils. In: Bioremediation of salt affected soils: an Indian perspective. Springer, Cham, pp 133–156

    Chapter  Google Scholar 

  • Yang Y, He C, Huang L, Ban Y, Tang M (2017) The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PloS One 12(8):e0182264

    Article  Google Scholar 

  • Yang Q, Ravnskov S, Neumann Andersen M (2020) Nutrient uptake and growth of potato: Arbuscular mycorrhiza symbiosis interacts with quality and quantity of amended biochars. J Plant Nutr Soil Sci 183(2):220–232

    Article  CAS  Google Scholar 

  • Ye L, Zhao X, Bao E, Cao K, Zou Z (2019) Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystem II activities and stress-response gene expressions under salinity–alkalinity stresses. Front Plant Sci 10:863

    Article  Google Scholar 

  • Yu H, Zou W, Chen J, Chen H, Yu Z, Huang J, Tang H, Wei X, Gao B (2019) Biochar amendment improves crop production in problem soils: a review. J Environ Manag 232:8–21

    Article  CAS  Google Scholar 

  • Zeng L, Li J, Liu J, Wang M (2014) Effects of arbuscular mycorrhizal (AM) fungi on citrus fruit quality under nature conditions. Southwest China J Agric Sci 27(5):2101–2105

    Google Scholar 

  • Zhang S, Lehmann A, Zheng W, You Z, Rillig MC (2019) Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol 222(1):543–555

    Article  CAS  Google Scholar 

  • Zhang S, Yun W, Xia Y, Wu S, You Z, Rillig MC (2022a) Arbuscular mycorrhiza reduced nitrogen loss via runoff, leaching, and emission of N2O and NH3 from microcosms of paddy fields. Water Air Soil Pollut 233(1):1–17

    Article  Google Scholar 

  • Zhang J, Li J, Ma L, He X, Liu Z, Wang F, Chu G, Tang X (2022b) Accumulation of glomalin-related soil protein benefits soil carbon sequestration: tropical coastal forest restoration experiences. Land Degrad Dev 33(10):1541–1551

    Article  Google Scholar 

  • Zhu R, Zheng Z, Li T, He S, Zhang X, Wang Y, Liu T (2019) Effect of tea plantation age on the distribution of glomalin-related soil protein in soil water-stable aggregates in southwestern China. Environ Sci Pollut Res 26(2):1973–1982

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Malobane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malobane, M.E., Madzivhandila, M.R. (2024). Enhancement of Soil Arbuscular Mycorrhizal Fungi: A Step Towards Restoring Marginal Soils. In: Nciizah, A.D., Roopnarain, A., Ndaba, B., Malobane, M.E. (eds) The Marginal Soils of Africa. Springer, Cham. https://doi.org/10.1007/978-3-031-55185-7_14

Download citation

Publish with us

Policies and ethics