Skip to main content

Exploring Biotechnological Strategies in the Monitoring of Soil Quality

  • Chapter
  • First Online:
The Marginal Soils of Africa

Abstract

Land degradation caused by factors such as climate change and pollution is among the prominent environmental challenges currently confronting the world; this has resulted in poor soil quality leading to loss of soil fertility as well as loss of biodiversity. In order to address the adverse implications of climate change and improve food productivity and ecosystem function, it is necessary to minimize land degradation and rehabilitate marginal or degraded lands. This can be achieved through monitoring soil quality, including identifying soil health indicators to detect changes caused by both natural processes and human activities such as changes in land use, pesticide application, and fertilizer use. Monitoring of soil quality can provide valuable information on soil health and ecosystem functioning. Despite the importance of soil monitoring indicators, certain limitations have been observed. In recent times, biotechnological strategies for monitoring soil quality have gained increasing attention in evaluating the soil’s chemical, physical, and biological features as it has allowed for a more efficient and accurate soil quality analysis. Current developments in biotechnology have necessitated the need to explore the prospect of incorporating biotechnological approaches in the monitoring of soil quality. This includes soil enzymes, microbial biomass, diversity, and activities, nano biosensors, metagenomics, etc. The application of biotechnological approaches as sustainable means of monitoring soil quality for possible reclamation of marginal lands forms the basis of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adetunji AT, Lewu FB, Mulidzi R, Ncube B (2017) The biological activities of ꞵ-glucosidase, phosphatase and urease as soil quality indicators: a review. J Soil Sci Plant Nutr 17(3)

    Google Scholar 

  • Ahmad A, Yaseen M, Ahmed I, Niamat B, Gondal AH, Aziz A et al (2022) Response of mulching on soil physical and biochemical properties and functions. In: Mulching in agroecosystems: plants, soil & environment. Springer Nature Singapore, Singapore, pp 89–100

    Chapter  Google Scholar 

  • Alkorta I, Aizpurua A, Riga P, Albizu I, Amézaga I, Garbisu C (2003) Soil enzyme activities as biological indicators of soil health. Rev Environ Health 18(1):65–73

    Article  Google Scholar 

  • Al-Maliki S, Al-Taey DKA, Al-Mammori HZ (2021) Earthworms and eco-consequences: considerations to soil biological indicators and plant function: a review. Acta Ecologica Sinica

    Google Scholar 

  • Al-Yasiri K (2019) Pesticides and their impact on contamination of agricultural soils located between Al-Kifl Stream and Awfi River. Babylon Univ J Hum Sci 5:91, 92, 94, 96

    Google Scholar 

  • Amara DMK, Sawyerr PA, Saidu DH, Vonu OS, Musa RM, Mboma JCA et al (2022) Studies on the genesis of soils in Jong River Basin in the Northern Province of Sierra Leone. Open J Geol 12(3):273–293

    Article  Google Scholar 

  • Amooh MK, Bonsu M (2015) Effects of soil texture and organic matter on evaporative loss of soil moisture. J Agric Ecol 3(3):152–161

    Google Scholar 

  • Aravind J, Kamaraj M, Prashanthi Devi M et al (2021) Strategies and tools for pollution mitigation. Springer

    Book  Google Scholar 

  • Arit E (2016) The soil cation exchange capacity and its effects on soil fertility

    Google Scholar 

  • Ascough JC, Ahuja LR, McMaster GS, Ma L et al (2019) Agriculture models. In: Fath B (ed) Encyclopedia of ecology, 2nd edn. Elsevier, pp 1–10

    Google Scholar 

  • Awotoye OO, Dada AC, Arawomo GAO (2011) Impact of palm oil processing effluent discharge on the quality of receiving soil and river in South Western Nigeria. J Appl Sci Res 7(2):111–118

    CAS  Google Scholar 

  • Azad AB, Amin L, Sidik NM (2014) Genetically engineered organisms for bioremediation of pollutants in contaminated sites. Chin Sci Bull 59(703)

    Google Scholar 

  • Bach EM, Ramirez KS, Fraser TD, Wall DH (2020) Soil biodiversity integrates solutions for a sustainable future. Sustainability 12(7):2662

    Article  Google Scholar 

  • Bansiwal K, Maheshvari RP (2018) Soil pollution and its solutions. Int J Eng Res Gen Sci 7:550–553

    CAS  Google Scholar 

  • Barkha S, Shalini T, Kailash CK (2022) Microbiome engineering and biotechnology. Wiley online library. https://doi.org/10.1002/9781119830795

    Book  Google Scholar 

  • Behera BK, Prasad R (2020) Strategies for soil management. In: Behera BK, Prasad R (eds) Environmental technology and sustainability. Elsevier, pp 143–167

    Chapter  Google Scholar 

  • Bhowmik A, Kukal SS, Saha D, Sharma H et al (2019) Potential indicators of soil health degradation in different land use-based ecosystems in the Shiwaliks of Northwestern India. Sustainability 11(14):3908

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211

    Article  CAS  Google Scholar 

  • Borrelli P, Robinson DA, Panagos P, Lugato et al (2020) Land use and climate change impacts on global soil erosion by water (2015-2070). Proc Natl Acad Sci 117(36):21994–22001

    Article  CAS  Google Scholar 

  • Bossolani JW, Crusciol CAC, Leite MFA et al (2021) Modulation of the soil microbiome by long-term Ca-based soil amendments boosts soil organic carbon and physicochemical quality in a tropical no-till crop rotation system. Soil Biol Biochem 156:108188

    Article  CAS  Google Scholar 

  • Brookes PC, Cayuela ML, Contin M et al (2008) The mineralization of fresh and humified soil organic matter by the soil microbial biomass. Waste Manag 28(4):716–722

    Article  CAS  Google Scholar 

  • Bünemann ES, Bongiorno G, Bai Z, Creamer RE et al (2018) Soil quality- a critical review. Soil Biol Biochem 120:105–125

    Article  Google Scholar 

  • Cambi M, Giannetti F, Bottalico F, Travaglini D et al (2018) Estimating machine impact on strip roads via close-range photogrammetry and soil parameters: a case study in Central Italy. iForest 11:148–154

    Article  Google Scholar 

  • Čechmánková J, Skála J, Sedlařík V, Duřpeková S et al (2021) The synergic effect of whey-based hydrogel amendment on soil water holding capacity and availability of nutrients for more efficient valorization of dairy by-products. Sustainability 13(19):10701

    Article  Google Scholar 

  • Chalise D, Kumar L, Kristiansen P (2019) Land degradation by soil erosion in Nepal: a review. Soil Syst 3(1):12

    Article  Google Scholar 

  • Chowdhury N, Marschner P, Burns RG (2011) Soil microbial activity and community composition: impact of changes in matric and osmotic potential. Soil Biol Biochem 43(6):1229–1236

    Article  CAS  Google Scholar 

  • Corstanje R, Mercer TG, Rickson RJ et al (2017) Physical soil quality indicators for monitoring British soils. Solid Earth 8(5):1003–1016

    Article  Google Scholar 

  • Dai Y, Qiao X, Wang X (2018) Study on cation exchange capacity of agricultural soils. Mater Sci Eng 392

    Google Scholar 

  • Delgado-Baquerizo M, Oliverio AM, Brewer TE et al (2018) A global atlas of the dominant bacteria found in soil. Science 359(6373):320–325

    Article  CAS  Google Scholar 

  • Demir Z (2020) Effects of microbial bio-fertilizers on soil physicochemical properties under different soil water regimes in greenhouse grown eggplant (Solanum Melongena L). Commun Soil Sci Plant Anal 51(14):1888–1903

    Article  CAS  Google Scholar 

  • Deshesh TH, Alk AA, Faten AA (2019) Influence of some natural soil conditioners under different levels of mineral nitrogen on sandy soil properties and maize productivity. J Soil Sci 4:261–274

    Google Scholar 

  • Dietz S, Adger WN (2003) Economic growth, biodiversity loss and conservation effort. J Environ Manag 68(1):23–35

    Article  Google Scholar 

  • Dora N (2019) The role of soil pH in plant nutrition and soil remediation. Appl Environ Soil Sci 5794869

    Google Scholar 

  • Doran JW (1996) Soil health and global sustainability. Soil Quality is in the Hands of the Land Manager 45

    Google Scholar 

  • Dupont ST, Kalcsits T, Clark K (2021) Soil health indicators for central Washington orchards. PLos ONE 16(10)

    Google Scholar 

  • Ejaz MK, Aurangzib M, Iqbal R, Shahzaman M et al (2022) The use of soil conditioners to ensure a sustainable wheat yield under water deficit conditions by enhancing the physiological and antioxidant potentials. Land 11(3):368

    Article  Google Scholar 

  • Escobar-Zepeda A, Vera-Ponce de León A, Sanchez-Flores A (2015) The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front Genet 6:348

    Article  Google Scholar 

  • Eudoxie G, Martin M (2019) Compost tea quality and fertility. Organic fertilizers-history, production and applications

    Google Scholar 

  • Feng S, Wen H, Ni S et al (2019) Degradation characteristics of soil-quality-related physical and chemical properties affected by collapsing gully: the case of subtropical hilly region China. Sustainability 11(12):3369

    Article  CAS  Google Scholar 

  • Fierer N, Wood SA, de Mesquita CPB (2021) How microbes can, and cannot, be used to assess soil health. Soil Biol Biochem 153:108111

    Article  CAS  Google Scholar 

  • Fungo B, Lehmann J, Kalbitz K, Thionģo M, Tenywa M, Okeyo I, Neufeldt H (2019) Ammonia and nitrous oxide emissions from a field Ultisol amended with tithonia green manure, urea, and biochar. J Biol Fertil Soils 55:135–148

    Article  CAS  Google Scholar 

  • Garba R, Kumar V (2020) Microrganism based biosensors to detect soil pollutants. Plant Arch 20(2):2509–2516

    Google Scholar 

  • Gardi C, Jeffery S, Saltelli A (2013) An estimate of potential threats levels to soil biodiversity in EU. Global Change Biol 19:1538–1548

    Article  Google Scholar 

  • George PBL, Lallias D, Creer S et al (2019) Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat Commun 10:1107

    Article  Google Scholar 

  • Goa T, Zewude I (2021) Review on climate change impact on soils: adaptation and mitigation. Int J Environ Pollut Res 9(2):58–65

    Google Scholar 

  • Gong X, Huang D, Liu Y et al (2018) Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives. Crit Rev Biotechnol 38(3):455–468

    Article  CAS  Google Scholar 

  • Graham EB, Crump AR, Kennedy DW et al (2018) Multi ’omics comparison reveals metabolome biochemistry, not microbiome composition or gene expression, corresponds to elevated biogeochemical function in the hyporheic zone. Sci Total Environ 642:742–753

    Article  CAS  Google Scholar 

  • Haddaway NR, Hedlund K, Jackson LE et al (2015) What are the effects of agricultural management on soil organic carbon in boreo-temperate systems? Environ Evid 4:23

    Article  Google Scholar 

  • Hamidov A, Helming K, Bellocchi G et al (2018) Impacts of climate change adaptation options on soil functions: a review of European case-studies. Land Degrad Dev 29(8):2378–2389

    Article  Google Scholar 

  • He Y, Li G, Xi B et al (2022) Fine root plasticity of young Populus tomentosa plantations under drip irrigation and nitrogen fixation in the North China Plain. Agric Water Manag 261

    Google Scholar 

  • Hermans SM, Buckley HL, Case BS, Curran-Cournane F, Taylor M, Lear G (2020) Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome 8:79

    Article  CAS  Google Scholar 

  • Hossain A, Krupnik TJ, Timsina J et al (2020) Agricultural land degradation: processes and problems undermining future food security. Environ Climate Plant Veg Growth:17–61

    Google Scholar 

  • Huera-Lucero T, Labrador-Moreno J, Blanco-Salas J et al (2020) A framework to incorporate biological soil quality indicators into assessing the sustainability of territories in the Ecuadorian Amazon. Sustainability 12(7):3007

    Article  Google Scholar 

  • Indoria AK, Sharma KL, Reddy KS (2020) Climate change and soil interactions. ScienceDirect:473–508

    Google Scholar 

  • IPBES (2019) In: Brondízio ES, Settele J, Díaz S, Ngo HT (eds) Global assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn, p 1144

    Google Scholar 

  • Ipingbemi O (2009) Socio-economic implications and environmental effects of oil spillage in some communities in the Niger Delta. J Integr Environ Sci 6:7–23

    Article  Google Scholar 

  • Irmal S, Sharma V, Mohammed AT et al (2018) Impacts of cover crops on soil physical properties: field capacity, permanent wilting point, soil-water holding capacity, bulk density, hydraulic conductivity and infiltration. Am Soc Agric Biol Eng 6(4):1307–1321

    Google Scholar 

  • Isobe K, Bouskill NJ, Brodie EL, Sudderth EA, Martiny JBH (2020) Phylogenetic conservation of soil bacterial responses to simulated global changes. Philos Trans R Soc Lond - Ser B: Biol Sci 375:20190242

    Article  CAS  Google Scholar 

  • Izah SC, Aigberua AO (2017) Assessment of microbial quality of cassava mill effluents contaminated soil in a rural community in the Niger delta, Nigeria. EC Microbiol 13:132–140

    Google Scholar 

  • Izah SC, Angaye TC, Ohimain EI (2016) Environmental impacts of oil palm processing in Nigeria. Biotechnol Res 2(3):132–141

    Google Scholar 

  • Izah SC, Bassey SE, Ohimain EI (2017) Assessment of heavy metal in cassava mill effluent contaminated soil in a rural community in the Niger Delta region of Nigeria. EC Pharmacol Toxicol 4:186–201

    Google Scholar 

  • Izah SC, Bassey SE, Ohimain EI (2018) Impacts of Cassava mill effluents in Nigeria. J Plant Anim Ecol 1:14–42

    Article  Google Scholar 

  • Jaihoon R (2019) A review paper on climate change and its impact on soil. Jaihoon Rafie J Eng Res Appl 9(2):2248–9622

    Google Scholar 

  • Jee LF, Hua L, Yung SL et al (2017) Microbiome engineering: current application and its future. Biotechnol J 12(3)

    Google Scholar 

  • Joutey NT, Bahafid W, Sayel H et al (2013) Biodegradation: involved microorganisms and genetically engineered microorganism

    Google Scholar 

  • Khanum TA, Mehmood N, Khatoon N (2021) Nematodes as biological indicators of soil quality in the agroecosystems

    Google Scholar 

  • Koreň M, Slančík M, Suchomel J et al (2015) Use of terrestrial laser scanning to evaluate the spatial distribution of sol disturbance by skidding operations. IForest 8:386–393

    Article  Google Scholar 

  • Kremer RJ (2017) Biotechnology impacts on soil and environmental services. Soil Health an Intensification of Agroecosystems, pp 353–375

    Google Scholar 

  • Krüger I, Chartin C, van Wesemael B et al (2018) Defining a reference system for biological indicators of agricultural soil quality in Wallonia, Belgium. Ecol Indic 95:568–578

    Article  Google Scholar 

  • Kumar A (2020) Inorganic soil contaminants and their biological remediation. Plant Responses to Soil Pollution 978-981-15-4963-2

    Google Scholar 

  • Kuramae EE, Yergeau E, Wong LC (2012) Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol Ecol 79(1):12–24

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199

    Article  CAS  Google Scholar 

  • Lahlali R, Ibrahim DSS, Belabess Z et al (2021) High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects. Heliyon 7(10):e08142. ISSN 2405-8440

    Article  CAS  Google Scholar 

  • Lal R (2001) World cropland soils as a source or sink for atmospheric carbon

    Google Scholar 

  • Lehmann J, Bossio DA, Kögel-Knabner I et al (2020) The concept and future prospects of soil health. Nat Rev Earth Environ 1:544–553

    Article  Google Scholar 

  • Leite MFA, van den Broek SWEB, Kuramae EE (2022) Current challenges and pitfalls in soil metagenomics. Microorganisms 10:1900

    Article  CAS  Google Scholar 

  • Li G, Sun GX, Ren Y et al (2018) Urban soil and human health: a review. Eur J Soil Sci 69:196–215

    Article  Google Scholar 

  • Li Y, Wang C, Ge L et al (2022) Environmental behaviors of Bacillus thuringiensis (Bt) insecticidal proteins and their effects on microbial ecology. Plants 11(9):1212

    Article  CAS  Google Scholar 

  • Liu Y, Duan M, Yu Z (2013) Agricultural landscapes and biodiversity in China. Agric Ecosyst Environ 166:46–54

    Article  Google Scholar 

  • Loganathan M, Navendrian JN (2014) Characterization of soil quality indicators: a study. J Global Biosci 3(2):586–592

    Google Scholar 

  • Luo Y, Zhou X (2006) Soil and respiration environment. Academic Press, San Diego

    Google Scholar 

  • Mobilian C, Craft CB (2021) Wetland soils: physical and chemical properties and biogeochemical processes. Science Direct 3:157–168

    Google Scholar 

  • Nannipieri P (1994) The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In: Pankhurts CE, Doube BM, Gupta BM, Grace PR (eds) Soil biota: management in sustainable farming. CSIRO, Melbourne, pp 238–244

    Google Scholar 

  • Nannipieri P, Giagnoni L, Renella G et al (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762

    Article  Google Scholar 

  • Nath A J., Bhattacharyya T, & Ray, S K (2014). Assessment of rice farming management practices based on soil organic carbon pool analysis.

    Google Scholar 

  • Nielsen MN, Winding, Binnerup S (2002) Microorganisms as indicators of soil health

    Google Scholar 

  • Okwute LO, Isu NR (2007) The environmental impact of palm oil mill effluent (pome) on some physico-chemical parameters and total aerobic bioload of soil at a dump site in Anyigba, Kogi State, Nigeria. Afr J Agric Res 2(12):656–662

    Google Scholar 

  • Onwuka B, Mang B (2018) Effects of soil temperature on some soil properties and plant growth. Adv Plants Agric Res 8(1):34–37

    Google Scholar 

  • Oshunsanya S (2019) Introductory chapter: relevance of soil pH to agriculture

    Google Scholar 

  • Pileggi M, Pileggi SA, Sadowsky MJ (2020) Herbicide bioremediation: from strains to bacterial communities. Heliyon 6(12):e05767

    Article  CAS  Google Scholar 

  • Posthumus H, Deeks L, Rickson R et al (2015) Costs and benefits of erosion control measures in the UK. Soil Use Manag 31:16–33

    Article  Google Scholar 

  • Prajapati K, Modi HA (2012) The importance of potassium in plant growth–a review. Indian J Plant Sci 1(02-03):177–186

    Google Scholar 

  • Prasad R, Chakraborty D (2019) Phosphorous basics: understanding phosphorous forms and their cycling in the soil. Crop Prod

    Google Scholar 

  • Rajakaruna, Boyd RS (2008) Edaphic factor. Encycl Ecol 3:1201–1207

    Google Scholar 

  • Raj S, Vijayan K K, Alavandi S V, Balasubramanian C P, & Santiago T C (2012). Effect of temperature and salinity on the infectivity pattern of white spot syndrome virus (WSSV) in giant tiger shrimp Penaeus monodon (Fabricius, 1837).

    Google Scholar 

  • Rath KM, Rousk J (2015) Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review. Soil Biol Biochem 81:108–123

    Article  CAS  Google Scholar 

  • Rattan L (2020) Soil organic matter content and crop yield. J Soil Water Conserv 75(2):27A–32A

    Article  Google Scholar 

  • Riaz M, Arif MS, Ashraf MA et al (2019) A comprehensive review on rice responses and tolerance to salt stress. In: Hasanuzzaman M, Fujita M et al (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publishing, pp 133–158

    Chapter  Google Scholar 

  • Rolf D (2005) The metagenomics of soil. Nat Rev Microbiol 3(6):470–478

    Article  Google Scholar 

  • Ronald SJ (2008) Site selection and climate. Wine Science, pp 239–269

    Google Scholar 

  • Rust N, Lunder OE, Iversen S et al (2022) Perceived causes and solutions to soil degradation in the UK and Norway. Land 11(1):131

    Article  Google Scholar 

  • Sahab S, Suhani I, Srivastava V et al (2021) Potential risk assessment of soil salinity to agroecosystem sustainability: current status and management strategies. Sci Total Environ 764:144164

    Article  CAS  Google Scholar 

  • Saleem M, Hu J, Jousset A (2019) More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst 50:145–168

    Article  Google Scholar 

  • Salem HM, Abdel-Salam A, Abdel-Salam MA et al (2017) Soil xenobiotics and their phytochemical remediation. In: Hashmi M, Kumar V, Varma A (eds) Xenobiotics in the soil environment, soil biology, vol 49, pp 267–280

    Google Scholar 

  • Santini NS, Chamizo S, Lucas Borja ME et al (2022) Restoration of degraded terrestrial ecosystems. Front Ecol Evol 10:863845

    Article  Google Scholar 

  • Saxena G, Marzinelli EM, Naing NN et al (2015) Ecogenomics reveals metals and land-use pressures on microbial communities in the waterways of a megacity. Environ Sci Technol 49:1462

    Article  CAS  Google Scholar 

  • Seiyaboh EI, Izah SC (2019) Impacts of soil pollution on air quality under Nigerian setting. J Soil Water Sci 3(1):45–53

    Google Scholar 

  • Sharma V, Rudnick DR, Irmak S (2013) Development and evaluation of ordinary least squares regression models for predicting irrigated and rainfed maize and soybean yields. T. ASABE 56:1361–1378

    Google Scholar 

  • Shinde R, Sakar PK, Thombare N (2019) Soil conditioners. Agric Food 1(10)

    Google Scholar 

  • Shrestha P, Bellitürk K, Görres JH (2019) Phytoremediation of heavy metal-contaminated soil by switchgrass: a comparative study utilizing different composts and coir fiber on pollution remediation, plant productivity and nutrient leaching. Int J Environ Res Public Health 16:1261

    Article  CAS  Google Scholar 

  • Shrinivas N, Padmaja P, Suryawanshi et al (2019) Soil metagenomics: concepts and applications

    Google Scholar 

  • Sipos R, Székely A, Révész S et al (2010) Addressing PCR biases in environmental microbiology studies. In: Bioremediation. Humana Press, pp 37–58

    Chapter  Google Scholar 

  • Stivers L (2017) Introduction to soils: soil quality. Pennsylvania State University. Introduction to Soils: Soil Quality (psu.edu)

    Google Scholar 

  • Surya J N, Vikas T, Yadav, R P, Singh D, Katiyar D K, Nagdev R, & Singh S K (2018). Land Resource Inventory and Characterization for Planning Soil Conservation Measures in Aravalli Hill Slopes.

    Google Scholar 

  • Tahat MM, Kholoud M, Alananbeh YA et al (2020) Soil health and sustainable agriculture. Sustainability 12:48–59

    Article  Google Scholar 

  • Talbot B, Rahlf J, Astrup R (2018) An operational UAV-based approach for stand-level assessment of soil disturbance after forest harvesting. Scand J For Res 33(4):387–396

    Article  Google Scholar 

  • Terashima M, Mihara M (2020) Interaction among soil physical, chemical and biological properties under different farming systems. Int J Environ Rural Dev 13(1)

    Google Scholar 

  • Thakur N, Sharma R (2019) Soil quality. Int J Curr Microbiol Appl Sci 8(7):2319–7706

    Google Scholar 

  • Thies JE (2007) Molecular methods for studying soil ecology. In: Soil microbiology, ecology and biochemistry. Academic Press, pp 85–118

    Chapter  Google Scholar 

  • Tibbett M, Fraser TD, Duddigan S (2020) Identifying potential threats to soil biodiversity. PeerJ 8:9271

    Article  Google Scholar 

  • USDA, United States Department of Agriculture (2014) soil health-infiltration

    Google Scholar 

  • Vieira A, Moura M, Silva L (2021) Metagenomics in grasslands and forests-a review and bibliometric analysis. Appl Soil Ecol 167

    Google Scholar 

  • Vilkiene M, Mockeviciene I, Karcauskiene D et al (2021) Biological indicators of soil quality under different tillage systems in retisol. Sustainability 13(17):9624

    Article  CAS  Google Scholar 

  • Vinhal-Freitas IC, Corrêa GF, Wendling et al (2017) Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators. Ecol Indic 74:182–190

    Article  CAS  Google Scholar 

  • Withers E, Hill PW, Chadwick DR et al (2020) Use of untargeted metabolomics for assessing soil quality and microbial function. Soil Biol Biochem 143:107758

    Article  CAS  Google Scholar 

  • Wu P, Wang Z, Bhatnagar A et al (2021) Microorganisms-carbonaceous materials immobilized complexes: synthesis, adaptability and environmental applications. J Hazard Mater 416:125915

    Article  CAS  Google Scholar 

  • Yang J, Zang L (2011) Water infiltration in urban soils and its effects on the quantity and quality of runoff. J Soils Sediments 11:751–761

    Article  CAS  Google Scholar 

  • Yousfi S, Marín J, Parra L et al (2021) A rhizogenic biostimulant effect on soil fertility and roots growth of turfgrass. Agronomy 11:573

    Article  CAS  Google Scholar 

  • Yu H, Kong B, Wang Q et al (2020) Hyper remote sensing application in soil: a review. Science Direct:269–291

    Google Scholar 

  • Zhang W, Wang C, Xue R et al (2019) Effects of salinity on the soil microbial community and soil fertility. J Integr Agric 18(6):1360–1368

    Article  CAS  Google Scholar 

  • Zhang Y, Hartemink AE, Huang J et al (2021) Digital soil morphometrics. Reference module in earth systems and environmental sciences

    Google Scholar 

  • Zong Y, Lu S (2019) Does long-term inorganic and organic fertilization affect soil structural and mechanical physical quality of paddy soil? Arch Agron Soil Sci

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Obi, L.U., Olisaka, F.N., Ene, C., Aniakor, U. (2024). Exploring Biotechnological Strategies in the Monitoring of Soil Quality. In: Nciizah, A.D., Roopnarain, A., Ndaba, B., Malobane, M.E. (eds) The Marginal Soils of Africa. Springer, Cham. https://doi.org/10.1007/978-3-031-55185-7_10

Download citation

Publish with us

Policies and ethics