Skip to main content

New Sorbents and Their Application for Deactivation of Liquid Radioactive Waste

  • Conference paper
  • First Online:
Liquid Radioactive Waste Treatment: Ukrainian Context (LWRT 2022)

Abstract

The article deals with the methods of obtaining sorbents and the possibilities of their application for deactivation of liquid radioactive waste. A method for obtaining nanodispersion of nickel-potassium ferrocyanides is proposed. The mechanism of formation of nanoparticles and a diffuse layer on the surface of nickel-potassium ferrocyanides nanocrystals is considered. The increased sorption of cesium (Kd > 100000, ml/g), in addition to ion exchange, is associated with the inclusion of cesium ions in the structure of the surface layer of ferrocyanide nanocrystals, which is due to the presence of octahedral cavities in the crystal lattice of nickel-potassium ferrocyanides, which contain water molecules, The efficiency of the proposed sorbents based on iron oxide micro- and nanotubes and iron (III) hydroxide nanoparticles modified with nickel-potassium ferrocyanides, whose size is mainly 1–100 µm, is shown. To decontaminate liquid radioactive waste containing complementary substances of organic nature, plasma-chemical treatment is used, which results in the formation of a dispersion containing nanoparticles of metals and metal oxides that show increased affinity for strontium and transition metals. The integrated use of this dispersion in combination with montmorillonite allows for effective treatment of multicomponent liquid radioactive waste. To increase the strontium recovery rate while maintaining high efficiency of cesium and transition metals recovery, it is advisable to apply preliminary plasma chemical treatment followed by the use of sorbents based on ferrocyanide-modified iron (III) oxides/hydroxides. The choice of the deactivation algorithm depends on the composition of liquid radioactive waste to be treated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ueda, S., Hasegawa, H., Ohtsuka, Y., Ochiai, S., Tani, T.: Ten-year radiocesium fluvial discharge patterns from watersheds contaminated by the Fukushima nuclear power plant accident. J. Environ. Radioact. 240, 106759 (2021). https://doi.org/10.1016/j.jenvrad.2021.106759

    Article  Google Scholar 

  2. Nosovskyy, A.V., Aleksyeyeva, Z.M., Borozenets’, H.P., et al.: Radioactive Waste Management. Tekhnika, Kiev (2007)

    Google Scholar 

  3. Milyutin, V.V., Gelis, V.M., Leonov, N.B.: Study of the kinetics of sorption of cesium and sorption radionuclides by sorbents of different classes. Radiochemistry 40, 418–420 (1998)

    Google Scholar 

  4. Rauwel, P., Rauwel, E.: Towards the extraction of radioactive cesium-137 from water via graphene/CNT and nanostructured Prussian blue hybrid nanocomposites: a review. Nanomaterials 9(5), 682 (2019). https://doi.org/10.3390/nano9050682

    Article  Google Scholar 

  5. Sharygin, L., Muromskij, A.: Inorganic sorbent for ion selective treatment of liquid radioactive waste. Radiokhimiya 46(2), 171–175 (2004)

    Google Scholar 

  6. Akpomie, K.G., et al.: Adsorption mechanism and modeling of radionuclides and heavy metals onto ZnO nanoparticles: a review. Appl. Water Sci. 13(1), 20 (2023). https://doi.org/10.1007/s13201-022-01827-9

    Article  Google Scholar 

  7. Zabulonov, Yu.L., Kadoshnikov, V.M., Melnychenko, T.I., Shkapenko, V.V., Lytvynenko, Yu.V., Kuzenko, S.V.: Patent UA № 145466; MPC (2020.01) C02F 1/00, G21F 9/04 (2006.01), C02F 9/00, C02F 101/20 (2006.01). Method for Purification of Technogenically Contaminated Waters Containing Radionuclides and Heavy Metals in the Presence of Surfactants and Complexing Agents. № u202004414; Appl. 15.07.2020; Publ. 10.12.2022, Bull. № 23

    Google Scholar 

  8. Zabulonov, Yu.L., Kadoshnikov, V.M., Melnychenko, T.I., Puhach, O.V., Shkapenko, V.V., Kuzenko, S.V.: Patent UA №. 149345; MPC (2021.01 C02F 11/00, B82Y 40/00. The Method of the Nanocomposite Obtaining for the Treatment of Technogenically Polluted and Radioactive Waters. №u202102632; Appl. 20.05.2021; Publ. 10.11.2021, Bull. № 45

    Google Scholar 

  9. Zabulonov, Yu.L., et al.: Patent UA № 152730; MPC (2023.01) G21F 9/06 (2006.01), B01J 20/00, B82B 3/00, B01J 23/70 (2006.01), B82Y 40/00. The Method of Obtaining a Nanodispersion of a Complex Sorbent for the Purification of Technogenically Polluted and Radioactive Waters. №u202203053; Appl. 22.08.2022; Publ. 05.04.2023, Bull. № 14

    Google Scholar 

  10. Melnychenko, T., et al.: Nanodispersion of ferrocianides for purification of man-made contaminated water containing caesium. J. Environ. Radioact. 261, 107135 (2023). https://doi.org/10.1016/j.jenvrad.2023.107135

    Article  Google Scholar 

  11. Ostwald, W.: Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 22, 289–330 (1897)

    Article  Google Scholar 

  12. Zabulonov, Y., Kadoshnikov, V., Zadvernyuk, H., Melnychenko, T., Molochko, V.: Effect of the surface hydration of clay minerals on the adsorption of cesium and strontium from dilute solutions. Adsorption 27, 41–48 (2021). https://doi.org/10.1007/s10450-020-00263-y

    Article  Google Scholar 

  13. Zabulonov, Y.L., Kadoshnikov, V.M., Melnychenko, T.I., Zadvernyuk, H.P., Kuzenko, S.V., Lytvynenko, Y.V.: Geochemical behavior of ferric hydroxide nanodispersion un der the influence of weak magnetic fields. Mineralogicheskiy Zhurnal 43(2), 74–79 (2021). https://doi.org/10.15407/mineraljournal.43.02.074

  14. Zabulonov, Yu.L., Kadoshnikov, V.M., Melnychenko, T.I., Nikolenko, V.O., Shkapenko, V.V., Puhach, O.V.: Patent UA № 150015; MPC (2021.01) C02F 1/00, G21F 9/04 (2006.01), C02F 9/00, C02F 101/20 (2006.01). A Complex Plasma-Chemical Method of Cleaning Technogencally Polluted Waters Containing Organic Substances, Radionuclides and Heavy Metals. №u202104379; Appl. 27.07.2021; Publ. 22.12.2021, Bull. № 51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetyana Melnychenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zabulonov, Y., Melnychenko, T., Kadoshnikov, V., Kuzenko, S., Guzii, S., Peer, I. (2024). New Sorbents and Their Application for Deactivation of Liquid Radioactive Waste. In: Zabulonov, Y., Peer, I., Zheleznyak, M. (eds) Liquid Radioactive Waste Treatment: Ukrainian Context. LWRT 2022. Lecture Notes in Civil Engineering, vol 469. Springer, Cham. https://doi.org/10.1007/978-3-031-55068-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55068-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55067-6

  • Online ISBN: 978-3-031-55068-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics