Skip to main content

Evaluation of Tactile Feedback for Teleoperated Glove-Based Interaction Tasks

  • Conference paper
  • First Online:
Human-Friendly Robotics 2023 (HFR 2023)

Abstract

This paper investigates the use of haptic feedback for glove-based teleoperation in interaction tasks. In particular, tactile feedback is provided to the operator’s fingers to render the force applied to the robot end-effector through the WEART TouchDIVER glove, together with visual feedback. The provided feedback is proportional to the interaction force between the robot and the environment during the execution of a teleoperation assembly task, making the operator able to feel the established interaction. Experiments, involving a remote assembly task, have been performed with and without (i.e., only making use of the visual feedback) the haptic feedback to assess its usefulness. The obtained results show the improved performance of the teleoperation task in terms of both success rate and human perception, suggesting the importance of tactile feedback in interaction tasks with glove-based teleoperation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haptic ring. US 20210060286A1 (2021)

    Google Scholar 

  2. Franka Emika website. FRANKA EMIKA GmbH (2022)

    Google Scholar 

  3. Batistute, A., Santos, E., Takieddine, K., Lazari, P.M., Da Rocha, L.G., Vivaldini, K.C.T.: Extended reality for teleoperated mobile robots. In: 2021 Latin American Robotics Symposium (LARS), 2021 Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in Education (WRE), pp. 19–24 (2021)

    Google Scholar 

  4. Bimbo, J., Pacchierotti, C., Aggravi, M., Tsagarakis, N., Prattichizzo, D.: Teleoperation in cluttered environments using wearable haptic feedback, pp. 3401–3408 (2017)

    Google Scholar 

  5. Bischoff, M.: siemens/ROS-sharp (2021)

    Google Scholar 

  6. Intel Corporation. Computer visionfor roboticscomes into focus. Techreport, Intel Corporation (2022)

    Google Scholar 

  7. Franka Emika. Franka control interface documentation (2022)

    Google Scholar 

  8. Dural, O.E.: Video: enhancing glove based teleoperation assembly tasks through tactile force feedback (2022)

    Google Scholar 

  9. Hogan, N.: Impedance control: an approach to manipulation: Part II-implementation (1985)

    Google Scholar 

  10. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: an historical survey. Automatica 42(12), 2035–2057 (2006)

    Article  MathSciNet  Google Scholar 

  11. Kuan, C.-P., Young, K.-Y.: Challenges in VR-based robot teleoperation. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), vol. 3, pp. 4392–4397 (2003)

    Google Scholar 

  12. Lenz, C., Behnke, S.: Bimanual telemanipulation with force and haptic feedback through an anthropomorphic avatar system. Robot. Auton. Syst. 161, 104338 (2023)

    Article  Google Scholar 

  13. Li, S., et al.: A mobile robot hand-arm teleoperation system by vision and IMU. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10900–10906 (2020)

    Google Scholar 

  14. Lichiardopol, S.: A survey on teleoperation. DCT rapporten. Technische Universiteit Eindhoven. DCT 2007.155 (2007)

    Google Scholar 

  15. Luo, R., et al.: Team northeastern’s approach to ana xprize avatar final testing: a holistic approach to telepresence and lessons learned. arXiv preprint arXiv:2303.04932 (2023)

  16. Minsky, M.: Telepresence (1980)

    Google Scholar 

  17. OptiTrack. Optitrack for robotics

    Google Scholar 

  18. Pacchierotti, C., Meli, L., Chinello, F., Malvezzi, M., Prattichizzo, D.: Cutaneous haptic feedback to ensure the stability of robotic teleoperation systems. Int. J. Robot. Res. 34(14), 1773–1787 (2015)

    Article  Google Scholar 

  19. Pacchierotti, C., Prattichizzo, D., Kuchenbecker, K.J.: Cutaneous feedback of fingertip deformation and vibration for palpation in robotic surgery. IEEE Trans. Biomed. Eng. 63(2), 278–287 (2016)

    Article  Google Scholar 

  20. Park, S., Jung, Y., Bae, J.: A tele-operation interface with a motion capture system and a haptic glove. In: 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 544–549 (2016)

    Google Scholar 

  21. Peer, A., Unterhinninghofen, U., Buss, M.: Tele-assembly in wide remote environments, p. 6, München. Technische Universität München (2006)

    Google Scholar 

  22. Radi, M., Reiter, A., Zaidan, S., Reinhart, G., Nitsch, V., Färber, B.: Telepresence in industrial applications: implementation issues for assembly tasks. Presence Teleoperators Virtual Environ. 19(5), 415–429 (2010)

    Article  Google Scholar 

  23. Rebelo, J., Sednaoui, T., den Exter, E.B., Krueger, T., Schiele, A.: Bilateral robot teleoperation: a wearable arm exoskeleton featuring an intuitive user interface. IEEE Robot. Autom. Mag. 21(4), 62–69 (2014)

    Article  Google Scholar 

  24. Shadow Robot. Shadow hand & glove

    Google Scholar 

  25. Open Robotics. ROS documentation (2022)

    Google Scholar 

  26. Romano, J.M., Hsiao, K., Niemeyer, G., Chitta, S., Kuchenbecker, K.J.: Human-inspired robotic grasp control with tactile sensing. IEEE Trans. Rob. 27(6), 1067–1079 (2011)

    Article  Google Scholar 

  27. de Melo, M.S.P., da Silva Neto, J.G., da Silva, P.J.L., Teixeira, J.M.X.N., Teichrieb, V.: Analysis and comparison of robotics 3D simulators. In: 2019 21st Symposium on Virtual and Augmented Reality (SVR), pp. 242–251 (2019)

    Google Scholar 

  28. Schloerb, D.W.: A quantitative measure of telepresence. Presence Teleoperators Virtual Environ. 4(1), 64–80 (1995)

    Article  Google Scholar 

  29. Scully, A.: Valuing the haptic: the cutaneous and the kinesthetic, pp. 494–499 (2018)

    Google Scholar 

  30. Shahid, A.A., Dural, O.E.: Github repository: glove-based-teleoperation (2022)

    Google Scholar 

  31. Weart. Touchdiver - weart (2022). https://www.weart.it/touchdiver/

  32. Whitney, D., Rosen, E., Phillips, E., Konidaris, G., Tellex, S.: Comparing robot grasping teleoperation across desktop and virtual reality with ROS reality. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds.) Robotics Research, pp. 335–350. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-28619-4_28

    Chapter  Google Scholar 

  33. Xu, S., Moore, S., Cosgun, A.: Shared-control robotic manipulation in virtual reality (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loris Roveda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dural, Ö.E., Shahid, A.A., Gioioso, G., Prattichizzo, D., Braghin, F., Roveda, L. (2024). Evaluation of Tactile Feedback for Teleoperated Glove-Based Interaction Tasks. In: Piazza, C., Capsi-Morales, P., Figueredo, L., Keppler, M., Schütze, H. (eds) Human-Friendly Robotics 2023. HFR 2023. Springer Proceedings in Advanced Robotics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-031-55000-3_6

Download citation

Publish with us

Policies and ethics