Skip to main content

Tendon to Object Space: Evaluation of Anthropomorphic Finger for Human-Like Performance

  • Conference paper
  • First Online:
Human-Friendly Robotics 2023 (HFR 2023)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 29))

Included in the following conference series:

  • 85 Accesses

Abstract

This investigation tackles the issue of assessing performance by comparing the mechanical outputs to capabilities achieved by human fingers in terms of dexterity and versatility. Unlike previous designs which are limited in their performance, our novel mathematical formulation bridges the gap between the mechanical attributes of anthropomorphic tendon-driven fingers and the dexterity of human fingers. Our formulation translates the mechanical output from the tendon space to the object space. In order to evaluate the performance of an anthropomorphic tendon-driven robotic finger, we measured fingertip forces as reference for human-level performance. The data was then used to formulate performance metrics for the robotic fingers. By comparing the recorded forces with that of the simulated mechanical output of the robotic fingers with different tendon routing designs, we can qualitatively gauge the performance and versatility of the robotic fingers for various grasping and manipulation tasks. Our mathematical formulation thus provides a different perspective, enabling a comprehensive assessment of the performance of tendon-driven robotic fingers in terms of dexterity as well as versatility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We assume anthropomorphic 3-link fingers, i.e., \(N{=}3\).

  2. 2.

    N always refers to the finger degrees of freedom (DoF).

  3. 3.

    ct and cw refer to precision fingertip and the whole-limb grasping, respectively.

  4. 4.

    The mapping is not a bijection (as in scenario 1), therefore, we build an augmented state to compute the feasible set polytope \(\mathcal P_{\mathcal {F}_{nt}}\) satisfying torque-constraints.

References

  1. Salisbury, J.K., Craig, J.J.: Articulated hands: force control and kinematic issues. Int. J. Robot. Res. 1(1), 4–17 (1982)

    Article  Google Scholar 

  2. Grebenstein, M., et al.: The hand of the DLR hand arm system: designed for interaction. Int. J. Robot. Res. 31(13), 1531–1555 (2012)

    Article  Google Scholar 

  3. Li, H., Ford, C.J., Bianchi, M., Catalano, M.G., Psomopoulou, E., Lepora, N.F.: BRL/Pisa/IIT Softhand: a low-cost, 3D-printed, underactuated, tendon-driven hand with soft and adaptive synergies. IEEE Robot. Autom. Lett. 7(4), 8745–8751 (2022)

    Article  Google Scholar 

  4. Shafer, A., Deshpande, A.D.: Human-like endtip stiffness modulation inspires dexterous manipulation with robotic hands. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 1138–1146 (2022)

    Article  Google Scholar 

  5. Stanev, D., Moustakas, K.: Modeling musculoskeletal kinematic and dynamic redundancy using null space projection. PLoS ONE 14, e0209171 (2019)

    Article  Google Scholar 

  6. Tigue, J.A., King, R.J., Mascaro, S.A.: Simultaneous kinematic and contact force modeling of a human finger tendon system using bond graphs and robotic validation. J. Dyn. Syst. Meas. Control 142(3), 031007 (2020)

    Article  Google Scholar 

  7. Min, S., Yi, S.: Development of cable-driven anthropomorphic robot hand. IEEE Robot. Autom. Lett. 6(2), 1176–1183 (2021)

    Article  Google Scholar 

  8. Basumatary, H., Hazarika, S.M.: Design optimization of an underactuated tendon-driven anthropomorphic hand based on grasp quality measures. Robotica 40(11), 4056–4075 (2022)

    Article  Google Scholar 

  9. Francis-Pester, F.W., Thomas, R., Sforzin, D., Ackland, D.C.: The moment arms and leverage of the human finger muscles. J. Biomech. 116, 110180 (2021)

    Article  Google Scholar 

  10. Blana, D., et al.: Model-based control of individual finger movements for prosthetic hand function. IEEE Trans. Neural Syst. Rehabil. Eng. 28(3), 612–620 (2020)

    Article  Google Scholar 

  11. Ganguly, A., Rashidi, G., Mombaur, K.: Comparison of the performance of the leap motion controllertm with a standard marker-based motion capture system. Sensors 21(5), 1750 (2021)

    Article  Google Scholar 

  12. Zhu, Y., Wei, G., Ren, L., Luo, Z., Shang, J.: An anthropomorphic robotic finger with innate human-finger-like biomechanical advantages part i: design, ligamentous joint, and extensor mechanism. IEEE Trans. Rob. 39(1), 485–504 (2022)

    Article  Google Scholar 

  13. Hidalgo-Carvajal, D., Herneth, C., Naceri, A., Haddadin, S.: End-to-end from human hand synergies to robot hand tendon routing. IEEE Robot. Autom. Lett. 7(4), 10057–10064 (2022)

    Article  Google Scholar 

  14. Valero-Cuevas, F.J., Towles, J.D., Hentz, V.R.: Quantification of fingertip force reduction in the forefinger following simulated paralysis of extensor and intrinsic muscles. J. Biomech. 33(12), 1601–1609 (2000)

    Article  Google Scholar 

  15. Sharma, N., Venkadesan, M.: Finger stability in precision grips. Proc. Natl. Acad. Sci. 119(12), e2122903119 (2022)

    Google Scholar 

  16. Roa, M.A., Suárez, R.: Grasp quality measures: review and performance. Auton. Robot. 38(1), 65–88 (2015)

    Article  Google Scholar 

  17. Song, P., Ram’on, J.A.C., Mezouar, Y.: Dynamic evaluation of deformable object grasping. IEEE Robot. Autom. Lett. 7(2), 4392–4399 (2022)

    Article  Google Scholar 

  18. Vazhapilli Sureshbabu, A., Metta, G., Parmiggiani, A.: A systematic approach to evaluating and benchmarking robotic hands-the FFP index. Robotics 8(1), 7 (2019)

    Article  Google Scholar 

  19. Valero-Cuevas, F.J.: A mathematical approach to the mechanical capabilities of limbs and fingers. In: Sternad, D. (ed.) Progress in Motor Control, pp. 619–633. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-77064-2_33

    Chapter  Google Scholar 

  20. Ajoudani, A., Tsagarakis, N.G., Bicchi, A.: Choosing poses for force and stiffness control. IEEE Trans. Robot. 33(6), 1483–1490 (2017)

    Article  Google Scholar 

  21. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, Hoboken (2020)

    Google Scholar 

  22. Herceg, M., Kvasnica, M., Jones, C., Morari, M.: Multi-parametric toolbox 3.0. In: Proceedings of the European Control Conference, Zürich, Switzerland, pp. 502–510 (2013). http://control.ee.ethz.ch/~mpt

  23. Valero-Cuevas, F.J.: An integrative approach to the biomechanical function and neuromuscular control of the fingers. J. Biomech. 38(4), 673–684 (2005)

    Article  Google Scholar 

  24. Patel, S., Sobh, T.: Manipulator performance measures - a comprehensive literature survey. J. Intell. Robot. Syst. Theory Appl. 77(3–4), 547–570 (2014). ISSN 1573-0409

    Google Scholar 

  25. Figueredo, L.F., Aguiar, R.C., Chen, L., Chakrabarty, S., Dogar, M.R., Cohn, A.G.: Human comfortability: integrating ergonomics and muscular-informed metrics for manipulability analysis during human-robot collaboration. IEEE Robot. Autom. Lett. 6(2), 351–358 (2020)

    Article  Google Scholar 

  26. Figueredo, L.F., Aguiar, R.D.C., Chen, L., Richards, T.C., Chakrabarty, S., Dogar, M.: Planning to minimize the human muscular effort during forceful human-robot collaboration. ACM Trans. Hum.-Robot Interact. (THRI) 11(1), 1–27 (2021)

    Google Scholar 

  27. Sahli, R., et al.: Tactile perception of randomly rough surfaces. Sci. Rep. 10(1), 15800 (2020)

    Article  Google Scholar 

  28. Valero-Cuevas, F.J., Zajac, F.E., Burgar, C.G.: Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J. Biomech. 31(8), 693–703 (1998)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Federal Ministry of Education and Research of the Federal Republic of Germany (BMBF) project AI.D (Project Number 16ME0539K), and partially funded by the Lighthouse Initiative Geriatronics from StMWi Bayern (Project X, grant 5140951). Please note that S. Haddadin has a potential conflict of interest as a shareholder of Franka Emika GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junnan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Ganguly, A., Figueredo, L.F.C., Haddadin, S. (2024). Tendon to Object Space: Evaluation of Anthropomorphic Finger for Human-Like Performance. In: Piazza, C., Capsi-Morales, P., Figueredo, L., Keppler, M., Schütze, H. (eds) Human-Friendly Robotics 2023. HFR 2023. Springer Proceedings in Advanced Robotics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-031-55000-3_14

Download citation

Publish with us

Policies and ethics