Skip to main content

Quantifying Uncertainties of Contact Classifications in a Human-Robot Collaboration with Parallel Robots

  • Conference paper
  • First Online:
Human-Friendly Robotics 2023 (HFR 2023)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 29))

Included in the following conference series:

  • 73 Accesses

Abstract

In human-robot collaboration, unintentional physical contacts occur in the form of collisions and clamping, which must be detected and classified separately for a reaction. If certain collision or clamping situations are misclassified, reactions might occur that make the true contact case more dangerous. This work analyzes data-driven modeling based on physically modeled features like estimated external forces for clamping and collision classification with a real parallel robot. The prediction reliability of a feedforward neural network is investigated. Quantification of the classification uncertainty enables the distinction between safe versus unreliable classifications and optimal reactions like a retraction movement for collisions, structure opening for the clamping joint, and a fallback reaction in the form of a zero-g mode. This hypothesis is tested with experimental data of clamping and collision cases by analyzing dangerous misclassifications and then reducing them by the proposed uncertainty quantification. Finally, it is investigated how the approach of this work influences correctly classified clamping and collision scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The letter R denotes a revolute joint and underlining actuation. The actuated prismatic joint of the parallel robot is kept constant and is therefore not considered in the modeling.

  2. 2.

    For the sake of readability, dependencies on \(\boldsymbol{q}\) and \(\boldsymbol{x}\) are omitted.

  3. 3.

    Estimated matrices/vectors of dynamics effects are denoted by \(\hat{(\cdot )}\).

References

  1. Albu-Schäffer, A., Ott, C., Frese, U., Hirzinger, G.: Cartesian impedance control of redundant robots: recent results with the DLR-light-weight-arms. In: 2003 IEEE International Conference on Robotics and Automation, vol. 3, pp. 3704–3709. https://doi.org/10.1109/ROBOT.2003.1242165

  2. Briquet-Kerestedjian, N., Wahrburg, A., Grossard, M., Makarov, M., Rodriguez-Ayerbe, P.: Using neural networks for classifying human-robot contact situations. In: 2019 18th European Control Conference, pp. 3279–3285. https://doi.org/10.23919/ECC.2019.8795649

  3. Cioffi, G., Klose, S., Wahrburg, A.: Data-efficient online classification of human-robot contact situations. In: 2020 European Control Conference, pp. 608–614. https://doi.org/10.23919/ECC51009.2020.9143644

  4. Dahiya, R.S., Mittendorfer, P., Valle, M., Cheng, G., Lumelsky, V.J.: Directions toward effective utilization of tactile skin: a review. IEEE Sens. J. 13(11), 4121–4138 (2013). https://doi.org/10.1109/JSEN.2013.2279056

    Article  Google Scholar 

  5. Golz, S., Osendorfer, C., Haddadin, S.: Using tactile sensation for learning contact knowledge: Discriminate collision from physical interaction. In: 2015 IEEE International Conference on Robotics and Automation, pp. 3788–3794. https://doi.org/10.1109/ICRA.2015.7139726

  6. Haddadin, S., de Luca, A., Albu-Schäffer, A.: Robot collisions: a survey on detection, isolation, and identification. IEEE Trans. Rob. 33(6), 1292–1312 (2017). https://doi.org/10.1109/TRO.2017.2723903

    Article  Google Scholar 

  7. Heo, Y.J., Kim, D., Lee, W., Kim, H., Park, J., Chung, W.K.: Collision detection for industrial collaborative robots: a deep learning approach. IEEE Robot. Autom. Lett. 4(2), 740–746 (2019). https://doi.org/10.1109/LRA.2019.2893400

    Article  Google Scholar 

  8. Hoang, X.B., Pham, P.C., Kuo, Y.L.: Collision detection of a Hexa parallel robot based on dynamic model and a multi-dual depth camera system. Sensors 22(15) (2022). https://doi.org/10.3390/s22155923

  9. International Organization for Standardization: Robots and robotic devices – collaborative robots (ISO/TS standard no. 15066:2016) (2016)

    Google Scholar 

  10. Kaneko, M., Tanie, K.: Contact point detection for grasping an unknown object using self-posture changeability. IEEE Trans. Robot. Autom. 10(3), 355–367 (1994). https://doi.org/10.1109/70.294210

    Article  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. https://arxiv.org/pdf/1412.6980

  12. de Luca, A., Mattone, R.: Actuator failure detection and isolation using generalized momenta. In: 2003 IEEE International Conference on Robotics and Automation, vol. 1, pp. 634–639 (2003). https://doi.org/10.1109/ROBOT.2003.1241665

  13. Merckaert, K., Convens, B., Wu, C.j., Roncone, A., Nicotra, M.M., Vanderborght, B.: Real-time motion control of robotic manipulators for safe human-robot coexistence. Robot. Comput.-Integr. Manufact. 73, 102,223 (2022). https://doi.org/10.1016/j.rcim.2021.102223

  14. Merlet, J.P.: Parallel robots, Solid mechanics and its applications, vol. 74, 2nd ed. edn. Springer (2006). https://doi.org/10.1007/1-4020-4133-0

  15. Mohammad, A., Habich, T.L., Schappler, M., Ortmaier, T.: Safe collision and clamping reaction for parallel robots during human-robot collaboration. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/iros55552.2023.10341581

  16. Mohammad, A., Schappler, M., Ortmaier, T.: Collision isolation and identification using proprioceptive sensing for parallel robots to enable human-robot collaboration. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/IROS55552.2023.10342345

  17. Mohammad, A., Schappler, M., Ortmaier, T.: Towards human-robot collaboration with parallel robots by kinetostatic analysis, impedance control and contact detection. In: 2023 IEEE International Conference on Robotics and Automation, pp. 12092–12098. https://doi.org/10.1109/ICRA48891.2023.10161217

  18. Ott, C.: Cartesian Impedance Control of Redundant and Flexible-Joint Robots, Springer tracts in advanced robotics, vol. 49. Springer, Berlin Heidelberg (2008). https://doi.org/10.1007/978-3-540-69255-3

  19. Park, K.M., Kim, J., Park, J., Park, F.C.: Learning-based real-time detection of robot collisions without joint torque sensors. IEEE Robot. Autom. Lett. 6(1), 103–110 (2021). https://doi.org/10.1109/LRA.2020.3033269

    Article  Google Scholar 

  20. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12(85) (2011)

    Google Scholar 

  21. Popov, D., Klimchik, A., Mavridis, N.: Collision detection, localization & classification for industrial robots with joint torque sensors. In: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication, pp. 838–843. https://doi.org/10.1109/ROMAN.2017.8172400

  22. Rosenstrauch, M.J., Pannen, T.J., Krüger, J.: Human robot collaboration - using Kinect v2 for ISO/TS 15066 speed and separation monitoring. Procedia CIRP 76, 183–186 (2018). https://doi.org/10.1016/j.procir.2018.01.026

    Article  Google Scholar 

  23. Taghirad, H.D.: Parallel Robots: Mechanics and control, 1st edition edn. CRC Press, Boca Raton, FL (2013). https://doi.org/10.1201/b16096

  24. Thanh, T.D., Kotlarski, J., Heimann, B., Ortmaier, T.: On the inverse dynamics problem of general parallel robots. In: 2009 IEEE International Conference on Mechatronics, pp. 1–6. https://doi.org/10.1109/ICMECH.2009.4957202

  25. Thanh, T.D., Kotlarski, J., Heimann, B., Ortmaier, T.: Dynamics identification of kinematically redundant parallel robots using the direct search method. Mech. Mach. Theory 52, 277–295 (2012). https://doi.org/10.1016/j.mechmachtheory.2012.02.002

    Article  Google Scholar 

  26. Zhang, Z., Qian, K., Schuller, B.W., Wollherr, D.: An online robot collision detection and identification scheme by supervised learning and Bayesian decision theory. IEEE Trans. Autom. Sci. Eng. 18(3), 1144–1156 (2021). https://doi.org/10.1109/TASE.2020.2997094

    Article  Google Scholar 

Download references

Acknowledgement

This work received support by the German Research Foundation (Deutsche Forschungsgemeinschaft) under grant number 444769341.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aran Mohammad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohammad, A., Muscheid, H., Schappler, M., Seel, T. (2024). Quantifying Uncertainties of Contact Classifications in a Human-Robot Collaboration with Parallel Robots. In: Piazza, C., Capsi-Morales, P., Figueredo, L., Keppler, M., Schütze, H. (eds) Human-Friendly Robotics 2023. HFR 2023. Springer Proceedings in Advanced Robotics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-031-55000-3_10

Download citation

Publish with us

Policies and ethics