Abstract
Large language models (LLMs) have generated excitement in many areas and may also make human-like conversations with social robots possible. Drawing from human-robot interaction literature and interviews, we developed Saleshat based on the commercial social robot Furhat and the large language model GPT-4. Saleshat emphasizes refined natural language processing and dynamic control of the robot’s physical appearance through the LLM. Responses from the LLM are processed sequentially, enabling the robot to react quickly. The results of our first formative evaluation with six users engaging in a sales conversation about Bluetooth speakers show that Saleshat can provide accurate and detailed responses, maintain a good conversation flow, and show dynamically controlled non-verbal cues. With our findings, we contribute to research on social robots and LLMs by providing design knowledge for LLM-based social robots and by uncovering the benefits and challenges of integrating LLMs into a social robot.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Nestlé to Use Humanoid Robot to Sell Nescafé in Japan (2014). https://www.nestle.com/media/news/nestle-humanoid-robot-nescafe-japan
Al Moubayed, S., et al.: Furhat: a back-projected human-like robot head for multiparty human-machine interaction. In: Esposito, A., et al. (eds.) Cognitive Behavioural Systems, vol. 7403, pp. 114–130. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34584-5_9
Bartneck, C., Forlizzi, J.: A design-centred framework for social human-robot interaction. In: RO-MAN 2004. 13th IEEE International Workshop on Robot and Human Interactive Communication (IEEE Catalog No.04TH8759), pp. 591–594. IEEE (2004). https://doi.org/10.1109/ROMAN.2004.1374827
Breazeal, C.: Toward sociable robots. Robot. Autonom. Syst. 42(3–4), 167–175 (2003). https://doi.org/10.1016/S0921-8890(02)00373-1
Breazeal, C., Scassellati, B.: A context-dependent attention system for a social robot. In: IJCAI International Joint Conference on Artificial Intelligence, vol. 2 (1999)
Brengman, M., De Gauquier, L., Willems, K., Vanderborght, B.: From stopping to shopping: an observational study comparing a humanoid service robot with a tablet service kiosk to attract and convert shoppers. J. Bus. Res. 134, 263–274 (2021). https://doi.org/10.1016/j.jbusres.2021.05.025
Brown, T.B., et al.: Language models are few-shot learners. arXiv preprint arXiv:2005.14165 (2020). https://doi.org/10.48550/ARXIV.2005.14165
Bulmer, S., Elms, J., Moore, S.: Exploring the adoption of self-service checkouts and the associated social obligations of shopping practices. J. Retail. Consum. Serv. 42, 107–116 (2018)
Cameron, G., et al.: Best practices for designing chatbots in mental healthcare - a case study on iHelpr (2018). https://doi.org/10.14236/ewic/HCI2018.129
Castelo, N., et al.: Task-dependent algorithm aversion. J. Market. Res. 56, 809–825 (2019). https://doi.org/10.1177/0022243719851788
Cherakara, N., et al.: FurChat: an embodied conversational agent using LLMs. arXiv preprint arXiv:2308.15214 (2023)
Choi, S., Mattila, A.S., Bolton, L.E.: To err is human(-oid): how do consumers react to robot service failure and recovery? J. Serv. Res. 24(3), 354–371 (2021). https://doi.org/10.1177/1094670520978798
Chowdhery, A., et al.: PaLM: scaling language modeling with pathways. arXiv preprint arXiv:2204.02311 (2022).
Christiano, P.F., Leike, J., Brown, T., Martic, M., Legg, S., Amodei, D.: Deep reinforcement learning from human preferences. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
Chuah, S.H.W., Yu, J.: The future of service: the power of emotion in human-robot interaction. J. Retail. Consum. Serv. 61, 102551 (2021). https://doi.org/10.1016/j.jretconser.2021.102551
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/N19-1423
Dietvorst, Berkeley J.., Simmons, Joseph P.., Massey, Cade: Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them. Management Science 64(3), 1155–1170 (2018). https://doi.org/10.1287/mnsc.2016.2643
Driess, D., et al.: PaLM-e: an embodied multimodal language model. arXiv preprint arXiv:2303.03378 (2023)
Evers, K., Chen, S.: Effects of an automatic speech recognition system with peer feedback on pronunciation instruction for adults. Comput. Assist. Lang. Learn. 35, 1869–1889 (2022). https://doi.org/10.1080/09588221.2020.1839504
Gilbert, S., Harvey, H., Melvin, T., Vollebregt, E., Wicks, P.: Large language model AI chatbots require approval as medical devices. Nat. Med. 29(10), 2396–2398 (2023). https://doi.org/10.1038/s41591-023-02412-6
Henschel, A., Laban, G., Cross, E.S.: What makes a robot social? a review of social robots from science fiction to a home or hospital near you. Curr. Robot. Rep. 2(1), 9–19 (2021). https://doi.org/10.1007/s43154-020-00035-0
Holthaus, P., Wachsmuth, S.: It was a pleasure meeting you: towards a holistic model of human-robot encounters. Int. J. Soc. Robot. 13, 1729–1745 (2021). https://doi.org/10.1007/s12369-021-00759-9
Ji, Z., et al.: Survey of hallucination in natural language generation. ACM Comput. Surv. 55, 1–38 (2023). https://doi.org/10.1145/3571730
Kaplan, J., et al.: Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020). https://doi.org/10.48550/ARXIV.2001.08361
Lim, M.Y., et al.: Demonstration of a robo-barista for in the wild interactions (2022). https://doi.org/10.1109/HRI53351.2022.9889443
Lu, L., Zhang, P., Zhang, T.C.: Leveraging “human-likeness" of robotic service at restaurants. Int. J. Hosp. Manag. 94, 102823 (2021). https://doi.org/10.1016/j.ijhm.2020.102823
Mende, M.A., Fischer, M.H., Kühne, K.: The use of social robots and the uncanny valley phenomenon. In: Zhou, Y., Fischer, M.H. (eds.) AI Love You, pp. 41–73. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19734-6_3
Niemelä, M., Heikkilä, P., Lammi, H., Oksman, V.: A social robot in a shopping mall: studies on acceptance and stakeholder expectations. In: Korn, O. (ed.) Social Robots: Technological, Societal and Ethical Aspects of Human-Robot Interaction, pp. 119–144. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17107-0_7
OpenAI: Gpt-4 Technical Report (2023)
Pandey, A.K., Gelin, R.: A mass-produced sociable humanoid robot: pepper: the first machine of its kind. IEEE Robot. Automat. Magaz. 25(3), 40–48 (2018). https://doi.org/10.1109/MRA.2018.2833157
Qin, C., Zhang, A., Zhang, Z., Chen, J., Yasunaga, M., Yang, D.: Is chatGPT a general-purpose natural language processing task solver? In: The 2023 Conference on Empirical Methods in Natural Language Processing (2023). https://openreview.net/forum?id=u03xn1COsO
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners (2019). https://api.semanticscholar.org/CorpusID:160025533
Reich, T., et al.: How to overcome algorithm aversion: learning from mistakes. J. Consum. Psychol. 33 (2023). https://doi.org/10.1002/jcpy.1313
Rindfleisch, A., Fukawa, N., Onzo, N.: Robots in retail: rolling out the whiz. AMS Rev. 12(3), 238–244 (2022). https://doi.org/10.1007/s13162-022-00240-4
Ruoff, M., Gnewuch, U.: Designing multimodal bi &a systems for co-located team interactions (2021)
Shanahan, M.: Talking about large language models. arXiv preprint arXiv:2212.03551v5 (2022). https://doi.org/10.48550/ARXIV.2212.03551. Publisher: arXiv Version Number: 5
Stark, C., et al.: Dobby: a conversational service robot driven by GPT-4. arXiv preprint arXiv:2310.06303v1 (2023). https://doi.org/10.48550/ARXIV.2310.06303
Stock, R.M., Merkle, M.: A service robot acceptance model: User acceptance of humanoid robots during service encounters. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 339–344. IEEE (2017). https://doi.org/10.1109/PERCOMW.2017.7917585
Turner, J.J., Szymkowiak, A.: An analysis into early customer experiences of self-service checkouts: lessons for improved usability. Eng. Manag. Prod. Serv. 11(1), 36–50 (2019)
Van Pinxteren, M.M., Wetzels, R.W., Rüger, J., Pluymaekers, M., Wetzels, M.: Trust in humanoid robots: implications for services marketing. J. Serv. Market. 33(4), 507–518 (2019). https://doi.org/10.1108/JSM-01-2018-0045
Vaswani, A., et al.: Attention is all you need (2017)
Wang, Y.J., Zhang, B., Chen, J., Sreenath, K.: Prompt a robot to walk with large language models. arXiv preprint arXiv:2309.09969 (2023)
Wei, J., et al.: Emergent abilities of large language models. arXiv preprint arXiv:2206.07682 (2022)
Wilcock, G.: Generating more intelligent responses and explanations with conversational AI and knowledge graphs. In: The 36th Annual Conference of the Japanese Society for Artificial Intelligence (2022)
Zhong, Q., Ding, L., Liu, J., Du, B., Tao, D.: Can ChatGPT understand too? a comparative study on ChatGPT and fine-tuned BERT. arXiv preprint arXiv:2302.10198v2 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hanschmann, L., Gnewuch, U., Maedche, A. (2024). Saleshat: A LLM-Based Social Robot for Human-Like Sales Conversations. In: Følstad, A., et al. Chatbot Research and Design. CONVERSATIONS 2023. Lecture Notes in Computer Science, vol 14524. Springer, Cham. https://doi.org/10.1007/978-3-031-54975-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-54975-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54974-8
Online ISBN: 978-3-031-54975-5
eBook Packages: Computer ScienceComputer Science (R0)