Skip to main content

Volumetric Defect Detection in Friction Stir Welding Through Convolutional Neural Networks Generalized Across Multiple Aluminum-Alloys and Sheet Thicknesses

  • Conference paper
  • First Online:
3rd International Conference on Advanced Joining Processes 2023 (AJP 2023)

Abstract

Friction Stir Welding (FSW) is a solid-state welding process, which has strongly impacted welding technology, particularly for aluminum alloy applications. Due to its high-quality welds in all aluminum alloys, comparatively low specific heat input at high energy efficiency and ecological friendliness, FSW is used in a rapidly growing number of safety critical applications. Currently destructive and non-destructive testing methods are added as a separate process step to verify weld seam quality, adding complexity, cost, and time to the production. Imperfections are detected late in the production process and require costly rework or discarding of the assembly. Several studies have shown the possibility of using Deep Neural Networks to evaluated data recorded during the FSW process. Analyzed data includes thermal measurements, acoustic measurements, image or video data and most commonly the comparably large and distinctive process feedback forces. This study is a continuation of efforts by the research group. In this study Convolutional Neural Networks (CNN) based on the DenseNet architecture were successfully trained to classify FSW process force recordings supplemented with weld meta-data to detect volumetric subsurface defects. The data-sets were generated while welding different aluminum alloys in multiple sheet thicknesses over a wide range of spindle rotational speeds and feedrates. The networks classification accuracy as well as the ability to generalize across the different welded aluminum alloys, sheet thicknesses and corresponding welding tools was evaluated. Achieving a classification accuracy of 98.37%, the development aims to provide a reliable and cost-effective quality monitoring solution with a wide range of applicability to replace the required expensive and time intensive ultrasonic, x-ray or macro-section weld seam testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Temple-Smith, P., Dawes, C.J: Improvements relating to friction welding. EP 0615 48 B1, 27 Nov 1992

    Google Scholar 

  2. Lohwasser, D., Chen, Z. (ed.): Friction Stir Welding: From Basics to Applications. Woodhead Publishing Cambridge UK (2010)

    Google Scholar 

  3. Richter, B.: Robot-based Friction Stir Welding for E-mobility and General Applications. Biuletyn Instytutu Spawalnictwa (2017). https://doi.org/10.17729/ebis.2017.5/11

  4. Sharma, N., Khan, Z.A., Siddiquee, A.N.: Friction stir welding of aluminum to copper—an overview. Trans. Nonferrous Metals Soc. China 27, 2113–2136 (2017). https://doi.org/10.1016/S1003-6326(17)60238-3

  5. Taheri, H., Kilpatrick, M., Norvalls, M., Harper, W.J., Koester, L.W., Bigelow, T., Bond, L.J.: Investigation of nondestructive testing methods for friction stir welding. Metals 9 (2019). https://doi.org/10.3390/met9060624

  6. Luhn, T.: Prozessdiagnose und Prozessüberwachung beim Rührreibschweißen. Dissertation, Techn. Univ. Ilmenau (2012)

    Google Scholar 

  7. Das, B., Pal, S., Bag, S.: A combined wavelet packet and Hilbert-Huang transform for defect detection and modelling of weld strength in friction stir welding process. J. Manuf. Process. 22, 260–268 (2016). https://doi.org/10.1016/j.jmapro.2016.04.002

  8. Rabe, P., Schiebahn, A., Reisgen, U.: Force feedback-based quality monitoring of the friction stir welding process utilizing an analytic algorithm. Welding World 65, 845–854 (2021). https://doi.org/10.1007/s40194-020-01044-5

  9. Boldsaikhan, E., Logar, A.M., Corwin, E.M.: Real-Time Quality Monitoring in Friction Stir Welding. The Use of Feedback Forces for Nondestructive Evaluation of Friction Stir Welding. Lambert Academic Publishing, Saarbrücken (2010)

    Google Scholar 

  10. Hartl, R., Bachmann, A., Habedank, J.B., Semm, T., Zaeh, M.F.: Process monitoring in friction stir welding using convolutional neural networks. Metals 11 (2021). https://doi.org/10.3390/met11040535

  11. Mishra, D., Roy, R.B., Dutta, S., Pal, S.K., Chakravarty, D.: A review on sensor based monitoring and control of friction stir welding process and a roadmap to Industry 4.0. J. Manuf. Process. 36, 373–397 (2018). https://doi.org/10.1016/j.jmapro.2018.10.016

  12. Li, G., Zhang, M., Li, J., Lv, F., Tong, G.: Efficient densely connected convolutional neural networks. Pattern Recogn. 109 (2021). https://doi.org/10.1016/j.patcog.2020.107610

  13. Mishra, R.S., Mahoney, M.W. (ed.): Friction stir welding and processing. ASM International, Materials Park, OH, USA (2007). ISBN: 978-0-87170-848-9

    Google Scholar 

  14. Reisgen, U., Schiebahn, A., Sharma, R., Maslennikov, A., Rabe, P., Erofeev, V.: A method for evaluating dynamic viscosity of alloys during friction stir welding. J. Adv. Joining Process. 1 (2020). https://doi.org/10.1016/j.jajp.2019.100002

  15. Rabe, P., Schiebahn, A., Reisgen, U.: Deep learning approaches for force feedback based void defect detection in friction stir welding. J. Adv. Joining Process. 5 (2022). https://doi.org/10.1016/j.jajp.2021.100087

  16. Rabe, P., Reisgen, U., Schiebahn, A.: Non-destructive evaluation of the friction stir welding process, generalizing a deep neural defect detection network to identify internal weld defects across different aluminum alloys. Welding World 67, 549–560 (2023). https://doi.org/10.1007/s40194-022-01441-y

    Article  Google Scholar 

  17. Wuest, T., Weimer, D., Irgens, C., Thoben, K.-D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4, 23–45 (2016). https://doi.org/10.1080/21693277.2016.1192517

    Article  Google Scholar 

  18. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K. Q.: Densely connected convolutional networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp 1063–6919 (2017). https://doi.org/10.1109/CVPR.2017.243

  19. Amini, A., Soleimany, A.: Introduction to Deep Learning. MIT Course (2021). http://introtodeeplearning.com/2021/slides/6S191_MIT_DeepLearning_L1.pdf. Accessed 16 Oct 2023

  20. Mishra, R.S., De, P.S., Kumar, N.: Friction Stir Welding and Processing—Science and Engineering. Springer, Heidelberg (2014)

    Book  Google Scholar 

  21. Gebhard, P.: Dynamisches Verhalten von Werkzeugmaschinen bei Anwendung für das Rührreibschweißen. Dissertation, Techn. Univ. München (2010)

    Google Scholar 

  22. Hattingh, D.G., Blignault, C., van Niekerk, T.I., James, M.N.: Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool. J. Mater. Process. Technol. 203, 46–57 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.028

    Article  Google Scholar 

  23. Hasieber, M., Wenz, F., Grätzel, M., Lenard, J.A., Matthes, S. u. Bergmann, J.P.: A systematic analysis of maximum tolerable tool wear in friction stir welding. Welding World 67, 325–339 (2023). https://doi.org/10.1007/s40194-022-01407-0

  24. Cole, E.G., Fehrenbacher, A., Shultz, E.F., Smith, C.B., Ferrier, N.J., Zinn, M.R., Pfefferkorn, F.E.: Stability of the friction stir welding process in presence of workpiece mating variations. Int. J. Adv. Manuf. Technol. 63, 583–593 (2012). https://doi.org/10.1007/s00170-012-3946-1

    Article  Google Scholar 

  25. Więckowski, W., Burek, R., Lacki, P., Łogin, W.: Analysis of wear of tools made of 1.2344 steel and MP159 alloy in the process of friction stir welding (FSW) of 7075 T6 aluminium alloy sheet metal. Eksploatacja i Niezawodnosc - Maintenance Reliab. 21, 54–59 (2018). https://doi.org/10.17531/ein.2019.1.7

  26. Muhayat, N., Zubaydi, A., Sulistijono, Yuliadi, M. Z.: Effect of tool tilt angle and tool plunge depth on mechanical properties of friction stir welded AA 5083 joints. Adv. Appl. Mech. Mater. 493, 709–714 (2014). https://doi.org/10.4028/www.scientific.net/AMM.493.709

  27. Zettler, R., Lomolino, S., dos Santos, J.F., Donath, T., Beckmann, F., Lippman, T., Lohwasser, D.: Effect of tool geometry and process parameters on material flow in FSW of an AA 2024–T351 Alloy. Welding World 49, 41–46 (2005). https://doi.org/10.1007/BF03266474

    Article  Google Scholar 

  28. International Organization for Standardization: Friction Stir Welding—Aluminium. Part 5, Quality and inspection requirements (ISO No. 25239–5:2020) (2020). https://www.iso.org/standard/77963.html

  29. Franke, D., Rudraraju, S., Zinn, M., Pfefferkorn, F.E.: Understanding process force transients with application towards defect detection during friction stir welding of aluminum alloys. J. Manuf. Process. 54, 251–261 (2020). https://doi.org/10.1016/j.jmapro.2020.03.003

    Article  Google Scholar 

  30. Jene, T.: Entwicklung eines Verfahrens zur prozessintegrierten Prüfung von Rührreibschweißverbindungen des Leichtbaus sowie Charakterisierung des Ermüdungsverhaltens der Fügungen. Dissertation, Techn. Univ. Kaiserslautern (2008)

    Google Scholar 

  31. Roberts, J.: Weld Quality Classification from Sensory Signatures in Friction-Stir-Welding (FSW) Using Discrete Wavelet Transform and Advanced Metaheuristic Techniques. https://digitalcommons.lsu.edu/gradschool_theses/4559. (2016). Accessed 16 Oct 2023

  32. Hattingh, D.G., van Niekerk, T.I., Blignault, C., Kruger, G., James, M.N.: Analysis of the FSW force footprint and its relationship with process parameters to optimise weld performance and tool design. Welding World 48, 50–58 (2004). https://doi.org/10.1007/BF03266414

    Article  Google Scholar 

  33. Boldsaikhan, E., Corwin, E.M., Logar, A., Arbegast, W.J.: Neural network evaluation of weld quality using FSW feedback data. In: Proceedings of 6th International Friction Stir Welding Symposium, Saint-Sauveur, Montreal, Canada (2006)

    Google Scholar 

  34. Boldsaikhan, E., Corwin, E.M., Logar, A.M., Arbegast, W.J.: The use of neural network and discrete Fourier transform for real-time evaluation of friction stir welding. Appl. Soft Comput. 11, 4839–4846 (2011). https://doi.org/10.1016/j.asoc.2011.06.017

  35. Wei, J.: AlexNet: the architecture that challenged CNNs. Towards Data Sci (2019). https://towardsdatascience.com/alexnet-the-architecture-that-challenged-cnns-e406d5297951. Accessed 16 Oct 2023

  36. Rabe, P., Motschke, T., Schiebahn, A., Reisgen, U.: Methode zur Umsetzung von Rührreibschweißprozessen auf konventionellen Fräsmaschinen mittels eines empirischen Ansatzes. Schweissen und Schneiden 72, 560–568 (2020)

    Google Scholar 

  37. Ambrosio, D., Wagner, V., Dessein, G., Paris, J.-Y., Jlaiel, K., Cahuc, O.: Plastic behavior-dependent weldability of heat-treatable aluminum alloys in friction stir welding. Int. J. Adv. Manuf. Technol. 117, 635–652 (2021). https://doi.org/10.1007/s00170-021-07754-4

    Article  Google Scholar 

  38. Kerckhofs, G., Schrooten, J., van Cleynenbreugel, T., Lomov, S.V., Wevers, M.: Validation of x-ray microfocus computed tomography as an imaging tool for porous structures. Rev. Sci. Instrum. 79 (2008). https://doi.org/10.1063/1.2838584

  39. Viscom: X-ray tubes. https://www.viscom.com/en/products/x-ray-tubes/. Accessed 16 Oct 2023

  40. International Organization for Standardization: Non-destructive Testing—Image Quality of Radiographs. Part 5: Determination of the image unsharpness and basic spatial resolution value using duplex wire-type image quality indicators (ISO No. 19232–5:2018) (2018). https://www.iso.org/standard/71853.html

  41. Zhang, W., Itoh, K., Tanida, J., Ichioka, Y.: Parallel distributed processing model with local space-invariant interconnections and its optical architecture. Appl. Opt. 29, 4790–4797 (1990). https://doi.org/10.1364/AO.29.004790

    Article  Google Scholar 

  42. He, K., Zhang, X., Ren, S., Sun, J.: Identity Mappings in Deep Residual Networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision, European Conference on Computer Vision, Amsterdam, October 2016. Lecture Notes in Computer Science, vol. 9910, pp. 630–645. Springer, Heidelberg (2016)

    Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC 2023 Internet of Production—390621612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Rabe .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rabe, P., Schiebahn, A., Reisgen, U. (2024). Volumetric Defect Detection in Friction Stir Welding Through Convolutional Neural Networks Generalized Across Multiple Aluminum-Alloys and Sheet Thicknesses. In: da Silva, L.F.M., Martins, P., Reisgen, U. (eds) 3rd International Conference on Advanced Joining Processes 2023. AJP 2023. Proceedings in Engineering Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-031-54732-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54732-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54731-7

  • Online ISBN: 978-3-031-54732-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics