Skip to main content

Heavy Mineral Assemblages and FT-IR Studies of Core Sediments from Arasalar River, Karaikkal, Pondichery Union Territory, India: A Tributary of Cauvery River

  • Chapter
  • First Online:
Modern River Science for Watershed Management

Abstract

The texture of sediments can reveal the source of evolution in river environments. This research was principally conducted to infer the source of the sedimentary process and the effect of the environmental factors on the river sediments in the Arasalar River. To extract the sediment transportation history and distribution of grain size, the research was attempted by analyzing textural properties, heavy mineral, and FT-IR studies of the river debris. The fundamentals of erosion, transportation, and deposition majorly depend on the dynamics of the statistical parameters such as an average or mean (Mz), skewness (Ski), standard deviation (σ1), and kurtosis (KG). The river's whole basin has extremely coarse to very fine sand that is very poorly sorted to moderately sorted. The sediment exhibited a range of grain sizes, ranging from coarse skewed to extremely fine skewed and had mesokurtic, platykurtic, and leptokurtic characteristics. The analysis of the linear discriminant function indicates that the sediments exhibit dominance in three main processes: fluvial, shallow marine, and turbidity. The beach environment and the presence of shallow, agitated water conditions are observed in the remaining sediment samples. Under CM diagram analysis, the majority of the sediment exhibits the bottom suspension and rolling category. The remaining samples were classified under rolling conditions. The region under consideration exhibits a variety of heavy mineral, including non-opaque and opaque minerals, which can be attributed to their origin in igneous and metamorphic rock formations. The current research focuses on the sediment originating from the Arasalar River, Pondicherry, southern Tamil Nadu, India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Babak HSAS, Davide M, Mundher YZ (2020) Application of newly developed ensemble machine learning models for daily suspended sediment load prediction and related uncertainty analysis. Hydrol Sci J 65(12):2022–2042

    Article  Google Scholar 

  • Al Dahoul N, Ahmed AN, Allawi MF, Sherif M, Sefelnasr A, Chau K-W, El-Shafie A (2022) A comparison of machine learning models for suspended sediment load classification. Eng Appl Comput Fluid Mech 16(01):1211–1232

    Google Scholar 

  • Atikur Rahman M, Hossain A, Riazul Islam M, Azim A, Gaber A, Aftab T (2022) Chapter 22 - Metals and metalloids stress in plants: microorganisms and phytoremediation based mitigation strategies. Metals Metalloids Soil Plant Water Syst Phytophysiol Remediation Techniques 445–484. https://doi.org/10.1016/B978-0-323-91675-2.00009-3

  • Augustsson C (2021) Influencing factors on petrography interpretations in provenance research a case-study review. Geosciences 11(5):205. Available from: https://doi.org/10.3390/geosciences11050205

  • Avramidis P, Samiotis A, Kalimani E, Papoulis D, Lampropouu P, Bekiari V (2013) Sediment charnockitesand the water physic—chemical parameters of the Lysimachia Lake, western Greece‛. Environ Earth Sci 70(2):383–392

    Google Scholar 

  • Baruah J, Kotoky P, Sarma JN (1997) Textural and Geochemical study on river sediments: a case study on the Jhanji River, Assam‛. J Indian Assoc Sedimentol 16:195–206

    Google Scholar 

  • Benedetto GED, Laviano R, Sabbatini L, Zambonin PG (2002) Infrared spectroscopy in the mineralogical characterization of ancient pottery. J Cult Herit 3:177

    Article  Google Scholar 

  • Caracciolo L (2020) Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: review. Appl Future Dev Earth-Sci Rev 209:103226. https://doi.org/10.1016/j.earscirev.2020.103226

    Article  Google Scholar 

  • Chinna Durai A, Ramasamy S, Narayanan S, Parthasarathy GP, Radha Krishnan K (2017) A study on textural characteristics of the Palar River sediments, Sadurangapattinam to Mamandur, Kanchipuram district, Tamil Nadu, India. Int Res J Earth Sci 5(11):24–33

    Google Scholar 

  • Chouhan R, Ramanathan AL, Adhya TK (2014) Patterns of seasonal variability in granulometric characteristics of Bhitarkanika mangrove—estuarine complex, East Coast of India. Indian J Geo Mar Sci 43(6):1083–1090

    Google Scholar 

  • Duane D (1964) Significance of skewness in recent sediments. Western Pamlico Sound

    Google Scholar 

  • Eisma D (1981) Supply and deposition of suspended materials in the North Sea, Holocene marine sedimentation in the North sea basin, 415–428

    Google Scholar 

  • Folk RL, Ward WC (1957) Brazos river bar: a study in the significance of grain size parameters. J Sedim Petrol 27(1957):3–26

    Article  Google Scholar 

  • Friedman GM (1961) Distinction between dune, beach and river sands from their textural characteristics. J Sedim Petrol 31:515–529

    Google Scholar 

  • Friedman GM (1962) On sorting, sorting coefficients, and lognormality of the grain size distribution of sandstone. J Geol 70:737–756

    Google Scholar 

  • Friedman GM (1967) Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands. J Sedim Petrol 37:327–354

    Google Scholar 

  • Friedman GM, Sanders JE (1978) Principles of sedimentology. Eiley, New York

    Google Scholar 

  • Garzanti E, Andò S (2019) Heavy minerals for junior woodchucks. Minerals 9:148. Available from: https://doi.org/10.3390/min9030148

  • Goswami K, Rawat M, Jaiswal MK, Kale VS (2019) Luminescence chronology of late-Holocene palaeofloods in the upper Kaveri basin, India: an insight into the climate-flood relationship. Holocene 29(6):1094–1104. https://doi.org/10.1177/0959683619831436

    Article  Google Scholar 

  • Griffith JC (1951) Size versus sorting in Caribbean sediments. J Geol 59(3):211–243

    Article  Google Scholar 

  • Hubert JF (1962) A zircon–tourmaline–rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. J Sedim Petrol 32:440–450

    CAS  Google Scholar 

  • Inman DL, Chamberlain FK (1955) Particle size distribution in nearshore sediments. In: Hough JL, Mearad HW (eds) Finding Ancient Shorelines, Soc Econ Paleont Miner Spec Publ 3, pp 106–129

    Google Scholar 

  • Inman DL (1949) Sorting of sediments in the light of fluid mechanics. J Sedim Petrol 19:10–30

    Google Scholar 

  • Johnson JI, Sharman GR, Szymanski E, Huang X (2022) Machine learning applied to a modern-Pleistocene petrographic data set: the global prediction of sand modal composition (GloPrSM) model. J Geophys Res Earth Surface 127(7):e2022JF006595. Available from: https://doi.org/10.1029/2022JF00659

  • Joshua EO, Oyebanjo OA (2010a) Grain-size and heavy mineral analysis of River Osun sediments. Aust J Basic Appl Sci 4:498–501

    CAS  Google Scholar 

  • Joshua EO, Oyebanjo OA (2010b) Grain-size and heavy mineral analysis of river Osun sediments. Aust J Basic Appl Sci 4(3):498–501

    CAS  Google Scholar 

  • Krippner A, Meinhold G, Morton AC, Schönig J, von Eynatten H (2016) Heavy minerals and garnet geochemistry of stream sediments and bedrocks from the Almklovdalen area, Western Gneiss Region, SW Norway: implications for provenance analysis. Sedim Geol 336:96–105. https://doi.org/10.1016/j.sedgeo.2015.09.009

    Article  CAS  Google Scholar 

  • Liang W, Xiumian H, Garzanti E, Wen H, Hou M (2023) Petrographic composition and heavy minerals in modern river sand: A global database. Geosci Data J Willy. Version 0.1. https://doi.org/10.1002/gdj3.219

  • Liu J, Zhang J, Miao X, Xu S, Wang H (2020) Mineralogy of the core YRD-1101 of the yellow river delta: implications for sediment origin and environmental evolution during the last ~1.9Myr. Quat Int 537(30):79–87. https://doi.org/10.1016/j.quaint.2019.12.025

  • Liu Y, Li Y (2017) Quantitative reconstruction of precipitation and runoff during MIS 5a, MIS 3a, and Holocene, arid China. Theoret Appl Climatol 130(3–4):747–754. https://doi.org/10.1007/s00704-016-1921-8

    Article  Google Scholar 

  • Lettieri M (2014) Infrared spectroscopic characterization of residues on archaeological pottery through different spectra acquisition modes. Vib Spectrosc 76:48–54. https://doi.org/10.1016/j.vibspec.2014.12.002

    Article  CAS  Google Scholar 

  • Mange MA, Wright DT (2007) Heavy minerals in use. Developments in sedimentology, vol 58. Elsevier, Amsterdam, pp 1329

    Google Scholar 

  • Mateus A, Figueiras J, Martins I, Pedro C (2020) Rodrigues and Filipe Pinto. Minerals 10:551

    Article  CAS  Google Scholar 

  • McKinney TF, Friedman GM (1970) Continental Shelf (sic) sediments of (sic) Long Island, New York. J Sed Petrol 40:213–248

    Google Scholar 

  • McKnight BK (1974) Heavy mineral content of sediments from deep sea drill sites 259–263, eastern Indian Ocean. Init Rep Deep Sea Drilling Proj 27:523–533

    CAS  Google Scholar 

  • Mir RA, Jeelani GH (2015) Textural characteristics of sediments and weathering in the Jhelum River basin located in Kashmir valley, western Himalaya. J Geol Soc India 86:445–458

    Article  CAS  Google Scholar 

  • Mohammad A, Bhanu Murthy P, Dhanamjaya Rao EN, Prasad H (2020) A study on textural characteristics, heavy mineral distribution and grainmicrotextures of recent sediment in the coastal area between the Sarada and Gosthani rivers, east coast of India. Int J Sedim Res 35(05):484–503. https://doi.org/10.1016/j.ijsrc.2020.03.007

    Article  Google Scholar 

  • Moiola RJ, Weiser D (1968) Textural parameters; an evaluation. J Sedim Res 38(1):45–53

    Google Scholar 

  • Müller G, Middelburg JJ, Sluijs A (2021) Introducing GloRiSe–a global database on river sediment composition. Earth Syst Sci Data 13(7):3565–3575

    Article  Google Scholar 

  • Ojo SO, Olatunji AS (2017) Depositional environments signatures, maturity and source weathering of Niger Delta sediments from an oil well in southeastern Delta State. Nigeria Eurasian J Soil Sci 6(3):259–274

    Google Scholar 

  • Paramasivam R, Shanmugam S, Venkidasamy R, Shanmugam, A (2021) Mineralogical characterization of sediments, Kalrayan Hills South India—A FTIR study. J Adv Sci Res 12(01):66–74. https://doi.org/10.55218/JASR.202112109

  • Passega R, Byramjee (1969) Grain size image of clastic deposits. Sedimentology 24:723–733

    Google Scholar 

  • Passega R (1957) Texture as characteristic of clastic deposition. Bull Am Ass Petrol Geol 41:1952–1984

    Google Scholar 

  • Passega R (1964) Grain size representation by CM patterns as a geological tool. J Sed Pet 34:830–847

    Article  CAS  Google Scholar 

  • Rajasekhara Reddy D, Karuna Karadu T, Deva D, Varma (2008) Textural characteristics of South Western part of Mahanadi Delta, east coast of India. J Ind Assoc Sed 27(1):111–121

    Google Scholar 

  • Ramasamy V, Paramasivam K, Suresh G, Jose MT (2014) J Environ Radioact 127:64–74

    Article  CAS  Google Scholar 

  • Ramasamy V, Rajkumar P, Ponnusamy V (2009) Depth wise analysis of recently excavated Vellar river sediments through FTIR and XRD studies. Indian J Phys 83:1295–1308. https://doi.org/10.1007/s12648-009-0110-3

    Article  CAS  Google Scholar 

  • Ravisankar R, Kiruba RS, Shamira C, Naseerutheen A, Balaji PD, Seran M (2011) Microchem J 99:370–375

    Google Scholar 

  • Ravisankar R (2009) EARFAM 19:272–276

    CAS  Google Scholar 

  • Ravisankar R, Kiruba S, Eswaran P, Senthilkumar G, Chandrasekaran A (2010) Mineralogical characterization studies of ancient potteries of Tamilnadu, India by FT-IR Spectroscopic Technique. ISSN: 0973-4945; CODEN ECJHAO E-J Chem 7(S1):S185–S190. http://www.e-journals.net

  • Ravisankar R, Naseerutheen A, Annamalai GR, Chandrasekaran A, Rajalakshmi A, Kanagasabapathy KV, Prasad MVR, Satpathy KK (2014) The analytical investigations of ancient pottery from Kaveripakkam, Vellore dist, Tamilnadu by spectroscopic techniques. Spectrochim Acta Part A Mol Biomol Spectrosc 121:457–463

    Article  CAS  Google Scholar 

  • Reineck HE, Singh IB (1980) Depositional sedimentary environment, 2nd edition. Springler, Berlin. https://link.springer.com/book/10.1007/978-3-642-81498-3

  • Seralathan, Padmalal D (1994) Textural studies of surfacial sediments of Muvattupuzha river and central Vembanad estuary, Kerala. J Geo Soc India 43:179–190

    Google Scholar 

  • Singh R, Kumar R, Bahuguna IM (2020) Grain size analysis of dune and bar sediments of the Shyok river between Khalsar and Hunder Village, Karakoram Range, Ladakh, India. J Geol Soc India 95:183–189. https://doi.org/10.1007/s12594-020-1408-1

    Article  CAS  Google Scholar 

  • Sivakumar S, Ravisankar R, Chandrasekaran A, Prince Prakash Jebakumar J (2013) FTIR spectroscopic studies on coastal sediment samples from Nagapattinum District, Tamil Nadu, India. Int Res J Pure Appl Chem 3(4):366–376

    Google Scholar 

  • Sivakumar S, Ravisankar R, Raghu Y, Chandrasekaran A, Chandramohan J (2012) FTIR spectroscopic studies on coastal sediment samples from Cuddalore District, Tamilnadu, India. Indian J Adv Chem Sci 1:40–46

    Google Scholar 

  • Song Z, Chouparova E, Jones KW, Feng H, Marinkovic NS (2001) FTIR investigation of sediments from NY/NJ Harbor, San Diego Bay, and the Venetian Lagoon. NSLS Activity Rep 2:112–116

    Google Scholar 

  • Sridhar A, Chamyal LS (2018) Implications of palaeohydrological proxies on the late Holocene Indian Summer Monsoon variability, western India. Quatern Int 479:25–33. https://doi.org/10.1016/j.quaint.2017.11.049

    Article  Google Scholar 

  • Stewart HB Jr (l958) Sedimentary reflections on depositional environments in San Migue Lagoon, Baja California, Mexico. Bull Am Assoc Pet Geolog 42:2567–2618

    Google Scholar 

  • Sun N, Li X, Dodson J, Zhou X, Zhao K, Yang Q (2016) The quantitative reconstruction of temperature and precipitation in the Guanzhong Basin of the southern Loess Plateau between 6200 BP and 5600 BP. Holocene 26(8):1200–1207. https://doi.org/10.1177/0959683616638417

    Article  Google Scholar 

  • Tang L, Zheng S, Wang H, Zhang W (2023) Comparative grain size analysis of modern flood sediments based on graphic and moment methods in the lower yellow river (Huang He), China Appl Sci 13:8934. https://doi.org/10.3390/app13158934

  • Tao H, Al-Khafaji SZ, Qi C, Zounemat M, Kermani OK, Tiyasha T, Chau K-W, Vahid N, Melesse AM, Elhakeem M, Farooque AA, Nejadhashemi AP, Khedher KM, Alawi OA, Deo RC, Shahid S, Singh VP, Yaseen ZM (2021) Artificial intelligence models for suspended river sediment prediction: state–of–the art, modeling framework appraisal, and proposed future research directions. Eng Appl Comput Fluid Mech 15(01):1585–1612

    Google Scholar 

  • Varathachari VVR, Nair RR, Murthy PSN (1968) Sub marine canyons off the Coromandal coast. Bull Natl Inst Sci India, 38:457–462

    Google Scholar 

  • Veerasingam S, Venkatachalapathy R, Basavaiah N, Ramkumar T, Venkatramanan S, Deenadayalan K (2014) Identification and characterization of tsunami deposits off southeast coast of India from the 2004 Indian Ocean Tsunami: Rock magnetic and geochemical approach. J Earth Syst Sci

    Google Scholar 

  • Veerasingam S, Venkatachalapathy R (2014) Assessment of carbonate concentration and characterization of marine sediments by Fourier Transform Infrared Spectroscopy. Infrared Phys Technol 66:136–140

    Article  CAS  Google Scholar 

  • Venkatesan S, Singarasubramanian SR (2016) Textural analysis of surface sediments in Arasalar River. Tamil Nadu and Pondicherry Union Territory, India

    Google Scholar 

  • Venkatesan S, Singarasubramanian SR, Suganraj K (2017) Depositional mechanism of sediments through size analysis from the core of Arasalar river near Karaikkal, east coast of India. Indian J Geo Mar Sci 46(10):2122–2131. http://nopr.niscpr.res.in/handle/123456789/42747

  • Venkatesan, S, Parthasarathy P, Rajmohan R, Sigarasubramanian S, Rajkumar A (2021) Textural characteristics and microtexture of sediments from vettar river mouth, Tamil Nadu, India: Implication for depositional environment and provenance. Int J Sci Res Multi Stud 7(3):64–70. https://www.isroset.org/index.php, https://www.researchgate.net/publication/350544512

  • Venkatesan S, Parthasarathy P, Singarasubramanian R.S, Rajmohan S & Rajkumar A (2023) An appraisal of trace element concentration and environmental risk of sediments: a baseline study of sediments from Arasalar River Estuary, Tamil Nadu, India. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-28552-3

  • Vermeesch P, Garzanti E (2015) Making geological sense of ‘big data’ in sedimentary provenance analysis. Chem Geol 409:20–27

    Article  CAS  Google Scholar 

  • Vezzoli G, Garzanti E, Limonta M, Andò S, Yang S (2016) Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk sample versus single-mineral provenance budgets. Geomorphology 261:177–192. https://doi.org/10.1016/j.geomorph.2016.02.031

    Article  Google Scholar 

  • Visher GS (1969) Grain size distributions and depositional processes. J Sediment Petrol 39:1074–1106

    Google Scholar 

  • Wu P, Xie Y, Kang C, Chi Y, Sun L, Wei Z (2022) Effects of provenance, transport processes and chemical weathering on heavy mineral composition: a case study from the songhua river drainage NE China. Front Earth Sci 10:839745. https://doi.org/10.3389/feart.2022.839745

    Article  Google Scholar 

  • Zhang C, Li Z, Chen Q, Dong S, Yu X, Yu Q (2020) Provenance of Eolian sands in the Ulan Buh Desert, Northwestern China, Revealed by heavy mineral assemblages. CATENA 193:104624. https://doi.org/10.1016/j.catena.2020.104624

    Article  Google Scholar 

Download references

Acknowledgements

The Department of Earth Sciences at Annamalai University provided the laboratory space for the sediment study, for which the corresponding author is grateful. The Annamalai University Department of Physics provided infrared spectroscopy using the Fourier transform (FT-IR) for the authors to use in identifying the minerals in sediment samples. The corresponding author would like to acknowledge financial support from RUSA 2.0 (G11/39493/DRD/RUSA 2.0).

Declaration

Ethical Approval Not applicable.

Consent to Participate Not applicable.

Consent to Publish Not applicable.

Funding Not applicable

Conflict of Interest

The authors claim to have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Contributions

Venkatesan Selvaraj: Conceptualization, Investigation, Methodology, Data Curation and Original draught writing. Singarasubramanian Ramachandran Saradhambal: Original draught, review and editing. Parthasarathy Pandu: Methodology, Interpretation, Conceptualization, Visualization, Methodology and Original draught writing. Ajin Bejino Aloysius: Validation sampling, software and analysis. Krishnan Vijayaprabhakaran: Investigation, validation and data curation.

Corresponding author

Correspondence to Venkatesan Selvaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selvaraj, V., Saradhambal, S.R., Pandu, P., Aloysius, A.B., Vijayaprabhakaran, K. (2024). Heavy Mineral Assemblages and FT-IR Studies of Core Sediments from Arasalar River, Karaikkal, Pondichery Union Territory, India: A Tributary of Cauvery River. In: Satheeshkumar, S., Thirukumaran, V., Karunanidhi, D. (eds) Modern River Science for Watershed Management. Water Science and Technology Library, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-031-54704-1_27

Download citation

Publish with us

Policies and ethics