Skip to main content

Abstract

The principles of the oxygen reduction reaction (ORR), including electrocatalysts and kinetics, are covered in this chapter. Based on the literature, both experimental and theoretical methods are used to explore the ORR kinetics, including reaction processes catalyzed by various electrode materials and catalysts, such as Pt-based alloys, carbon materials, and transition metal macrocyclic complexes. It was emphasized that although there is a large literature on ORR, there is still a need to design materials that can compete with noble metal-containing catalysts for ORR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abas N, Kalair A, Khan N (2015) Review of fossil fuels and future energy technologies. Futures 69:31–49

    Article  Google Scholar 

  • Acar ET, Tabakoglu TA, Atilla D, Yuksel F, Atun G (2018) Synthesis, electrochemistry and electrocatalytic activity of cobalt phthalocyanine complexes–effects of substituents for oxygen reduction reaction. Polyhedron 152:114–124

    Article  Google Scholar 

  • Alabi A, Popoola A, Popoola O, Mathe N, Abdulwahab M (2023) Materials for electrocatalysts in proton exchange membrane fuel cell: a brief review. Front Energy Res 11:1091105

    Article  Google Scholar 

  • Chen L, Xu X, Yang W, Jia J (2020) Recent advances in carbon-based electrocatalysts for oxygen reduction reaction. Chin Chem Lett 31(3):626–634

    Article  Google Scholar 

  • Chen Q, Zhang Z, Zhang R, Hu M, Shi L, Yao Z (2023) Recent progress of Non-Pt catalysts for oxygen reduction reaction in fuel cells. Processes 11(2):361

    Article  Google Scholar 

  • Coro J, Suárez M, Silva LSR, Eguiluz KIB, Salazar-Banda GR (2016) Fullerene applications in fuel cells: a review. Int J Hydrogen Energy 41(40):17944–17959

    Article  Google Scholar 

  • Cruz-Martínez H, Rojas-Chávez H, Matadamas-Ortiz P, Ortiz-Herrera J, López-Chávez E, Solorza-Feria O, Medina D (2021) Current progress of Pt-based ORR electrocatalysts for PEMFCs: an integrated view combining theory and experiment. Materials Today Physics 19:100406

    Article  Google Scholar 

  • Dai L, Xue Y, Qu L, Choi H-J, Baek J-B (2015) Metal-Free catalysts for oxygen reduction reaction. Chem Rev 115(11):4823–4892

    Article  Google Scholar 

  • Das S, Ghosh S, Kuila T, Murmu NC, Kundu A (2022) Biomass-Derived advanced carbon-based electrocatalysts for oxygen reduction reaction. Biomass 2(3):155–177

    Article  Google Scholar 

  • Eshghi A, Kheirmand MJSE (2019) Electroplating of Pt–Ni–Cu nanoparticles on glassy carbon electrode for glucose electro-oxidation process, vol 35(2), pp 128–134

    Google Scholar 

  • Ferreira P, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger H (2005) Instability of Pt∕ C electrocatalysts in proton exchange membrane fuel cells: a mechanistic investigation. J Electrochem Soc 152(11):A2256

    Article  Google Scholar 

  • Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764

    Google Scholar 

  • Guan J, Chen X, Wei T, Liu F, Wang S, Yang Q, Lu Y, Yang S (2015) Directly bonded hybrid of graphene nanoplatelets and fullerene: facile solid-state mechanochemical synthesis and application as carbon-based electrocatalyst for oxygen reduction reaction. J Mater Chem A 3(8):4139–4146

    Article  Google Scholar 

  • Guo K, Li N, Bao L, Lu X (2022) Fullerenes and derivatives as electrocatalysts: promises and challenges. Green Energy Environ

    Google Scholar 

  • Guo S, Sun S (2012) FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J Am Chem Soc 134(5):2492–2495

    Article  Google Scholar 

  • He S, Wu M, Li S, Jiang Z, Hong H, Cloutier SG, Yang H, Omanovic S, Sun S, Zhang G (2022) Research progress on graphite-derived materials for electrocatalysis in energy conversion and storage. Molecules 27(24):8644

    Article  Google Scholar 

  • Hu C, Dai L (2016) Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew Chem Int Ed 55(39):11736–11758

    Article  Google Scholar 

  • Huang L, Zaman S, Tian X, Wang Z, Fang W, Xia BY (2021) Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc Chem Res 54(2):311–322

    Article  Google Scholar 

  • Janssen M, Weber P, Oezaslan M (2023) Recent advances of various Pt-based catalysts for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs). Current Opin Electrochem 101337

    Google Scholar 

  • Kaur J, Sharma V, Das DK, Pandit B, Samdani MS, Shkir M, Manthrammel MA, Nangan S, Angadi VJ, Ubaidullah M (2024) Single-Atom catalysts for oxygen reduction reaction and methanol oxidation reaction. Fuel 358:130241

    Article  Google Scholar 

  • Khotseng L (2018) Oxygen reduction reaction. Electrocatalysts for fuel cells and hydrogen evolution-Theory to design, p 27

    Google Scholar 

  • Kong F, Wang M, Huang Y, Meng G, Chen M, Tian H, Chen Y, Chen C, Chang Z, Cui X (2023) Cu-N-bridged Fe-3d electron state regulations for boosted oxygen reduction in flexible battery and PEMFC. Energy Storage Mater 54:533–542

    Article  Google Scholar 

  • Lee S, Gwon K, Kim H, Park BJ, Shin JH (2022) High-performance amperometric carbon monoxide sensor based on a xerogel-modified PtCr/C microelectrode. Sens Actuators B Chem 369:132275

    Article  Google Scholar 

  • Lefèvre M, Proietti E, Jaouen F, Dodelet J-P (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells, vol 324(5923), pp 71–74

    Google Scholar 

  • Li H, Zhao H, Tao B, Xu G, Gu S, Wang G, Chang H (2022) Pt-based oxygen reduction reaction catalysts in proton exchange membrane fuel cells: controllable preparation and structural design of catalytic layer. Nanomaterials 12(23):4173

    Article  Google Scholar 

  • Liu Y, Yue X, Li K, Qiao J, Wilkinson DP, Zhang J (2016) PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds. Coord Chem Rev 315:153–177

    Article  Google Scholar 

  • Ma Z, Cano ZP, Yu A, Chen Z, Jiang G, Fu X, Yang L, Wu T, Bai Z, Lu J (2020) Enhancing oxygen reduction activity of pt-based electrocatalysts: from theoretical mechanisms to practical methods. Angew Chem 132(42):18490–18504

    Article  Google Scholar 

  • Mbayachi VB, Ndayiragije E, Sammani T, Taj S, Mbuta ER (2021) Graphene synthesis, characterization and its applications: a review. Res Chem 3:100163

    Google Scholar 

  • Molochas C, Tsiakaras P (2021) Carbon monoxide tolerant Pt-based electrocatalysts for H2-PEMFC applications: current progress and challenges. Catalysts 11(9):1127

    Article  Google Scholar 

  • Oetjen HF, Schmidt V, Stimming U, Trila F (1996) Performance data of a proton exchange membrane fuel cell using H 2/CO as fuel gas. J Electrochem Soc 143(12):3838

    Article  Google Scholar 

  • Olabi AG, Wilberforce T, Abdelkareem MA (2021) Fuel cell application in the automotive industry and future perspective. Energy 214:118955

    Article  Google Scholar 

  • Quílez-Bermejo J, Morallón E, Cazorla-Amorós D (2020) Metal-free heteroatom-doped carbon-based catalysts for ORR: a critical assessment about the role of heteroatoms. Carbon 165:434–454

    Article  Google Scholar 

  • Ruan M, Liu J, Song P, Xu W (2022) Meta-analysis of commercial Pt/C measurements for oxygen reduction reactions via data mining. Chin J Catal 43(1):116–121

    Article  Google Scholar 

  • Shao Q, Wang P, Huang X (2019) Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv Func Mater 29(3):1806419

    Article  Google Scholar 

  • Shioyama H, Ueda A, Kuriyama N (2007) Surface treatment of carbon supports for PEM fuel cell electrocatalyst. J New Mater Electrochem Syst 10

    Google Scholar 

  • Si F, Zhang Y, Yan L, Zhu J, Xiao M, Liu C, Xing W, Zhang J (2014) Electrochemical oxygen reduction reaction. Rotating electrode methods and oxygen reduction electrocatalysts. Elsevier, pp 133–170

    Chapter  Google Scholar 

  • Van Schalkwyk F, Pattrick G, Olivier J, Conrad O, Blair S (2016) Development and scale up of enhanced ORR Pt-based catalysts for PEMFCs. Fuel Cells 16(4):414–427

    Article  Google Scholar 

  • Wang Y, Jiao M, Song W, Wu Z (2017) Doped fullerene as a metal-free electrocatalyst for oxygen reduction reaction: a first-principles study. Carbon 114:393–401

    Article  Google Scholar 

  • Wang XX, Sokolowski J, Liu H, Wu G (2020) Pt alloy oxygen-reduction electrocatalysts: synthesis, structure, and property. Chin J Catal 41(5):739–755

    Article  Google Scholar 

  • Wang Y, Wang D, Li Y (2021a) A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2(1):56–75

    Article  Google Scholar 

  • Wang J, Kong H, Zhang J, Hao Y, Shao Z, Ciucci F (2021b) Carbon-based electrocatalysts for sustainable energy applications. Prog Mater Sci 116:100717

    Article  Google Scholar 

  • Wu S, Qu X, Zhu J, Liu X, Mao H, Wang K, Zhou G, Chi J, Wang L (2023) Recent advances in metal-organic frameworks derived electrocatalysts for oxygen reduction reaction. J Alloys Comp 172518

    Google Scholar 

  • Yao-Lin A, Du Z-Y, Ze H-J, Wang X-T, Zhang Y, Zhang H, Zheng Q-N, Dong J-C, Tian J-H, Li J-F (2023) Understanding the Molecular Mechanism of Oxygen Reduction Reaction using In-Situ Raman Spectroscopy. Current Opin Electrochem 101381

    Google Scholar 

  • Zaman S, Huang L, Douka AI, Yang H, You B, Xia BY (2021) Oxygen reduction electrocatalysts toward practical fuel cells: progress and perspectives. Angew Chem 133(33):17976–17996

    Article  Google Scholar 

  • Zhang L, Zhang J, Wilkinson DP, Wang H (2006) Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sour 156(2):171–182

    Article  Google Scholar 

  • Zhang J (2008) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Springer Science & Business Media

    Google Scholar 

  • Zhang L, Jiang S, Ma W, Zhou Z (2022) Oxygen reduction reaction on Pt-based electrocatalysts: four-electron vs. two-electron pathway. Chinese J Catalysis 43(6):1433–1443

    Google Scholar 

  • Zhao K, Shu Y, Li F, Peng G (2023) Bimetallic catalysts as electrocatalytic cathode materials for the oxygen reduction reaction in microbial fuel cell: a review. Green Energy Environ 8(4):1043–1070

    Article  Google Scholar 

  • Zhuang L, Jin J, Abruña HD (2007) Direct observation of electrocatalytic synergy. J Am Chem Soc 129(36):11033–11035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berdan Ulas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yagizatli, Y., Acil, G., Ulas, B., Demir-Kivrak, H. (2024). Oxygen Reduction Reaction; Fuel Cells. In: Kumar, A., Gupta, R.K. (eds) Atomically Precise Electrocatalysts for Electrochemical Energy Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-54622-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54622-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54621-1

  • Online ISBN: 978-3-031-54622-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics