Skip to main content

Abstract

The study of electrocatalysts for oxygen evolution reaction (OER) in water electrolysis is a rapidly advancing field, often utilizing noble metal-based materials. The chapter begins with an introduction to water electrolysis and then a current understanding of the two half-cell reactions, namely the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with a focus on their reaction mechanisms in both alkaline and acidic media. This chapter offers a comprehensive overview of fundamental knowledge related to the use of catalysts for the OER in water electrolysis. The discussion covers various categories of catalysts, including noble metals-based catalysts, transition metals-based catalysts, carbon nanotube-based metal/metal oxides catalysts, carbon nanotube-based metal-free electrocatalysts, and perovskite oxides electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A Hydrogen Strategy for a Climate Neutral Europe 2020. https://ec.europa.eu/energy/sites/ener/files/hydrogenstrategy.pdf

  • Boyd S, Augustyn V (2018) Transition metal oxides for aqueous sodium-ion electrochemical energy storage. Inorganic Chem Front 5(5):999–1015

    Article  Google Scholar 

  • Burke MS, Kast MG, Trotochaud L, Smith AM, Boettcher SW (2015) Cobalt-iron (oxy) hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J Am Chem Soc 137(10):3638–3648

    Article  Google Scholar 

  • Chen S, Huang H, Jiang P, Yang K, Diao J, Gong S, Liu S, Huang M, Wang H, Chen Q (2019) Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal 10(2):1152–1160

    Article  Google Scholar 

  • Chen Z, Duan X, Wei W, Wang S, Ni BJ (2020) Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 78:105270

    Article  Google Scholar 

  • Cheng Y (2015) Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Prog Nat Sci: Mater Int 25(6):545–553

    Article  Google Scholar 

  • Cherevko S, Zeradjanin AR, Topalov AA, Kulyk N, Katsounaros I, Mayrhofer KJ (2014) Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6(8):2219–2223

    Article  Google Scholar 

  • Chi J, Yu H (2018) Waterelectrolysisbasedonrenewableenergyfor hydrogen production. Chin J Catal 39:390–394

    Article  Google Scholar 

  • El-Shafie M (2023) Hydrogen production by water electrolysis technologies: a review. Results Eng 101426

    Google Scholar 

  • Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt TJ (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4(11):3800–3821

    Article  Google Scholar 

  • Gao M, Sheng W, Zhuang Z, Fang Q, Gu S, Jiang J, Yan Y (2014) Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc 136(19):7077–7084

    Article  Google Scholar 

  • Garcia AC, Touzalin T, Nieuwland C, Perini N, Koper MT (2019) Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. Angew Chem Int Ed 58(37):12999–13003

    Article  Google Scholar 

  • Geiger S, Kasian O, Ledendecker M, Pizzutilo E, Mingers AM, Fu WT, Diaz-Morales O, Li Z, Oellers T, Fruchter L, Ludwig A, Mayrhofer KJJ, Koper MTM, Cherevko S (2018) The stability number as a metric for electrocatalyst stability benchmarking. Nat Catal 1(7):508–515

    Article  Google Scholar 

  • Gong M, Wang DY, Chen CC, Hwang BJ, Dai H (2016) A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res 9:28–46

    Article  Google Scholar 

  • Gutiérrez-Martín F, Ochoa-Mendoza A, Rodríguez-Antón LM (2015) Pre-investigation of water electrolysis for flexible energy storage at large scales: the case of the Spanish power system. Int J Hydrogen Energy 40(15):5544–5551

    Article  Google Scholar 

  • Hammes-Schiffer S (2009) Theory of proton-coupled electron transfer in energy conversion processes. Acc Chem Res 42(12):1881–1889

    Article  Google Scholar 

  • Higareda A, Hernández-Arellano DL, Ordoñez LC, Barbosa R, Alonso-Vante N (2023) Advanced electrocatalysts for the oxygen evolution reaction: from single-to multielement materials. Catalysts 13(10):1346

    Article  Google Scholar 

  • IEA (2021) World Energy Balances: Overview, IEA, Parisp https://www.iea.org/reports/world-energy-balances-overview, License: CC BY 4.0

  • Irena I (2020) Green hydrogen cost reduction: scaling up electrolysers to meet the 1.5 °C climate goal. International Renewable Energy Agency, Abu Dhabi

    Google Scholar 

  • Jamesh MI, Sun X (2018) Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting–a review. J Power Sources 400:31–68

    Article  Google Scholar 

  • Joo J, Jin H, Oh A, Kim B, Lee J, Baik H, Joo SH, Lee K (2018) An IrRu alloy nanocactus on Cu2-xS@IrSy as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes. J Mater Chem A 6(33):16130–16138

    Article  Google Scholar 

  • Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075

    Article  Google Scholar 

  • Khan MA, Zhao H, Zou W, Chen Z, Cao W, Fang J, Xu J, Zhang J (2018) Recent progresses in electrocatalysts for water electrolysis. Electrochem Energy Rev 1:483–530

    Article  Google Scholar 

  • Kjartansdóttir CK, Nielsen LP, Møller P (2013) Development of durable and efficient electrodes for large-scale alkaline water electrolysis. Int J Hydrogen Energy 38(20):8221–8231

    Article  Google Scholar 

  • Li Y, Zhou W, Zhao X, Cheng W, Su H, Zhang H, Meihuani L, Liu Q (2019) Donutlike RuCu nanoalloy with ultrahigh mass activity for efficient and robust oxygen evolution in acid solution. ACS Appl Energy Mater 2(10):7483–7489

    Article  Google Scholar 

  • Li X, Zhao L, Yu J, Liu X, Zhang X, Liu H, Zhou W (2020) Water splitting: from electrode to green energy system. Nano-Micro Lett 12:1–29

    Article  Google Scholar 

  • Liu D, Zhang X, Sun Z, You T (2013) Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction. Nanoscale 5(20):9528–9531

    Article  Google Scholar 

  • Liu X, Wang X, Yuan X, Dong W, Huang F (2016) Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis. J Mater Chem A 4(1):167–172

    Article  Google Scholar 

  • Luo B, Yan X, Xu S, Xue Q (2013) Synthesis of worm-like PtCo nanotubes for methanol oxidation. Electrochem Commun 30:71–74

    Article  Google Scholar 

  • Makarova MV, Jirkovský J, Klementová M, Jirka I, Macounová K, Krtil P (2008) The electrocatalytic behavior of RuO.8CoO.2O2-x-the effect of particle shape and surface composition. Electrochimica Acta 53(5):2656–2664

    Google Scholar 

  • Miles MH, Thomason MA (1976) Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltammetric studies. J Electrochem Soc 123(10):1459

    Article  Google Scholar 

  • Miles MH, Klaus EA, Gunn BP, Locker JR, Serafin WE, Srinivasan S (1978) The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80 °C in acid solutions. Electrochim Acta 23(6):521–526

    Article  Google Scholar 

  • Nath M, Singh H, Saxena A (2022) Progress of transition metal chalcogenides as efficient electrocatalysts for energy conversion. Curr Opin Electrochem 34:100993

    Article  Google Scholar 

  • Oh J, Lee JM, Yoo Y, Kim J, Hwang SJ, Park S (2017) New insight of the photocatalytic behaviors of graphitic carbon nitrides for hydrogen evolution and their associations with grain size, porosity, and photophysical properties. Appl Catal B 218:349–358

    Article  Google Scholar 

  • Öztan H, Çapoğlu İK, Uysal D, Doğan ÖM (2023) A parametric study to optimize the temperature of hazelnut and walnut shell gasification for hydrogen and methane production. Bioresource Technol Rep 23:101581

    Article  Google Scholar 

  • Pavel CC, Cecconi F, Emiliani C, Santiccioli S, Scaffidi A, Catanorchi S, Comotti M (2014) Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis. Angew Chem Int Ed 53(5):1378–1381

    Article  Google Scholar 

  • Schweinar K, Gault B, Mouton I, Kasian O (2020) Lattice oxygen exchange in rutile IrO2 during the oxygen evolution reaction. J Phys Chem Lett 11(13):5008–5014

    Article  Google Scholar 

  • Stojić DL, Marčeta MP, Sovilj SP, Miljanić ŠS (2003) Hydrogen generation from water electrolysis-possibilities of energy saving. J Power Sources 118(1–2):315–319

    Article  Google Scholar 

  • Sultan S, Tiwari JN, Singh AN, Zhumagali S, Ha M, Myung CW, Thangavel P, Kim KS (2019) Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv Energy Mater 9(22):1900624

    Article  Google Scholar 

  • Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061):1383–1385

    Article  Google Scholar 

  • Tasdemir HM, Yagizatli Y, Yasyerli S, Yasyerli N, Dogu G (2019) A new sol-gel route alumina for selective oxidation of H2S to sulphur. Can J Chem Eng 97(12):3125–3137

    Article  Google Scholar 

  • Trotochaud L, Ranney JK, Williams KN, Boettcher SW (2012) Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J Am Chem Soc 134(41):17253–17261

    Article  Google Scholar 

  • Wang S, Lu A, Zhong CJ (2021) Hydrogen production from water electrolysis: role of catalysts. Nano Convergence 8:1–23

    Google Scholar 

  • Xie Y, Yu X, Li X, Long X, Chang C, Yang Z (2021) Stable and high-performance Ir electrocatalyst with boosted utilization efficiency in acidic overall water splitting. Chem Eng J 424:130337

    Article  Google Scholar 

  • Yeo BS, Bell AT (2012) In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J Phys Chem C 116(15):8394–8400

    Article  Google Scholar 

  • Yörük Ö, Yıldız MG, Uysal D, Doğan ÖM, Uysal BZ (2023) Experimental investigation for novel electrode materials of coal-assisted electrochemical in-situ hydrogen generation: parametric studies using single-chamber cell. Int J Hydrogen Energy 48(11):4173–4181

    Article  Google Scholar 

  • Yu M, Chan CK, Tüysüz H (2018) Coffee-waste templating of metal ion-substituted cobalt oxides for the oxygen evolution reaction. Chemsuschem 11(3):605–611

    Article  Google Scholar 

  • Yu M, Budiyanto E, Tüysüz H (2022) Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew Chem Int Ed 61(1):e202103824

    Article  Google Scholar 

  • Zheng T, Shang C, He Z, Wang X, Cao C, Li H, Si R, Pan B, Zhou S, Zeng J (2019) Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting. Angew Chem 131(41):14906–14911

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgü Yörük .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yörük, Ö., Çalı, A. (2024). Role of Electrocatalysts for Water Electrolysis. In: Kumar, A., Gupta, R.K. (eds) Atomically Precise Electrocatalysts for Electrochemical Energy Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-54622-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54622-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54621-1

  • Online ISBN: 978-3-031-54622-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics