Skip to main content
  • 45 Accesses

Abstract

Electrochemical energy conversion and storage (EECS) technologies have aroused worldwide interest as a consequence of the rising demands for renewable and clean energy. As a sustainable and clean technology, EECS has been among the most valuable options for meeting increasing energy requirements and carbon neutralization. Consequently, EECS technologies with high energy and power density were introduced to manage prevailing energy needs and ecological issues. In this contribution, recent trends and strategies on EECS technologies regarding devices and materials have been reviewed. The main features of EECS strategies; conventional, novel, and unconventional approaches; integration to develop multifunctional energy storage devices and integration at the level of materials; modeling and optimization of EECS technologies; EECS materials and devices along with challenges and limitations have been reviewed. Finally, conclusions and perspectives concerning upcoming studies were outlined for a better understanding of innovative approaches for the future development of high-performance EECS devices. It has been highlighted that electrochemical energy storage (EES) technologies should reveal compatibility, durability, accessibility and sustainability. Energy devices must meet safety, efficiency, lifetime, high energy density and power density requirements. Their competitiveness regarding performance, material and device stability, costs, and sustainability remains to be further improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balogun MS, Qiu W, Wang W, Fang P, Lu X, Tong Y (2015) Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J Mater Chem A 3:1364–1387

    Article  Google Scholar 

  • Balogun MS, Huang Y, Qiu W, Yang H, Ji H, Tong Y (2017) Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater Today 20:425–451

    Article  Google Scholar 

  • Borgschulte A, Terreni J, Fumey B, Sambalova O, Billeter E (2022) Short-lived interfaces in energy materials. Front Energy Res 9:784082

    Article  Google Scholar 

  • Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z (2018) Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 3:279–289

    Article  Google Scholar 

  • Cao S, Shen B, Tong T, Fu J, Yu J (2018) 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv Funct Mater 28:1800136

    Article  Google Scholar 

  • Chandrasekaran S, Ma D, Ge Y, Deng L, Bowen C, Roscow J, Zhang Y, Lin Z, Misra RDK, Li J, Zhang P, Zhang H (2020) Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy 77:105080

    Article  Google Scholar 

  • Choi C, Ashby DS, Butts DM, DeBlock RH, Wei Q, Lau J, Dunn B (2019) Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater 5:5–19

    Article  Google Scholar 

  • Comello S, Reichelstein S (2019) The emergence of cost effective battery storage. Nat Commun 10:2038

    Article  Google Scholar 

  • Covert T, Greenstone M, Knittel CR (2016) Will we ever stop using fossil fuels? J Econ Perspect 30:117–138

    Article  Google Scholar 

  • Dai L (2019) Metal-free carbon electrocatalysts: recent advances and challenges ahead. Adv Mater 31:1900973

    Article  Google Scholar 

  • Dong WX, Qu YF, Liu X, Chen LF (2023) Biomass-derived two-dimensional carbon materials: synthetic strategies and electrochemical energy storage applications. FlatChem 37:100467

    Article  Google Scholar 

  • Erdogan FO, Kopac T (2023) Adsorption behavior of alcohol vapors on Zonguldak-Karadon coal derived porous carbons. Energ Source Part A 45:2881–2902

    Article  Google Scholar 

  • Fagiolari L, Sampò M, Lamberti A, Amici J, Francia C, Bodoardo S, Bella F (2022) Integrated energy conversion and storage devices: interfacing solar cells, batteries and supercapacitors. Energy Stor Mater 51:400–434

    Google Scholar 

  • Gabrielli P, Gazzani M, Mazzotti M (2018) Electrochemical conversion technologies for optimal design of decentralized multienergy systems: modeling framework and technology assessment. Appl Energy 221:557–575

    Article  Google Scholar 

  • Hussain A, Arif SM, Aslam M (2017) Emerging renewable and sustainable energy technologies: state of the art. Renew Sustain Energy Rev 71:12–28

    Article  Google Scholar 

  • Kim M, Hwang HM, Park GH, Lee H (2017) Graphene-based composite electrodes for electrochemical energy storage devices: recent progress and challenges. FlatChem 6:48–76

    Article  Google Scholar 

  • Kopac T (2021) Hydrogen storage characteristics of biobased porous carbons of different origin: a comparative review. Int J Energy Res 45:20497–20523

    Article  Google Scholar 

  • Kopac T (2023) Current overview of the valorization of biowastes for adsorbed natural gas applications. Carbon Lett 33:1519–1547

    Article  Google Scholar 

  • Kopac T, Karaaslan T (2007) H2, He and Ar sorption on arc-produced cathode deposit consisting of multiwalled carbon nanotubes-graphitic and diamond-like carbon. Int J Hydrog Energy 32:3990–3997

    Article  Google Scholar 

  • Kopac T, Toprak A (2009) Hydrogen sorption characteristics of Zonguldak region coal activated by physical and chemical methods. Korean J Chem Eng 26:1700–1705

    Article  Google Scholar 

  • Li L, Zheng Y, Zhang S, Yang J, Shao Z, Guo Z (2018) Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ Sci 11:2310–2340

    Article  Google Scholar 

  • Li K, Wang X, Li S, Urbankowski P, Li J, Xu Y, Gogotsi Y (2020a) An ultrafast conducting polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors. Small 16:1906851

    Article  Google Scholar 

  • Li K, Liang M, Wang H, Wang X, Huang Y, Coelho J, Pinilla S, Zhang Y, Qi F, Nicolosi V, Xu Y (2020b) 3D MXene architectures for efficient energy storage and conversion. Adv Funct Mater 30:2000842

    Article  Google Scholar 

  • Lin H, Chen Y, Shi J (2018) Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv Sci 5:1800518

    Article  Google Scholar 

  • Liu JH, Yang ST, Wang X, Wang H, Liu Y, Luo PG, Liu Y, Sun YP (2014) Carbon nanoparticles trapped in vivo-similar to carbon nanotubes in time-dependent biodistribution. ACS Appl Mater Interfaces 6:14672–14678

    Article  Google Scholar 

  • Liu R, Ma L, Niu G, Li X, Li E, Bai Y, Yuan G (2017) Oxygen-deficient bismuth oxide/graphene of ultrahigh capacitance as advanced flexible anode for asymmetric supercapacitors. Adv Funct Mater 27:1701635

    Article  Google Scholar 

  • Ma W, Wan H, Zhang L, Zheng JY, Zhou Z (2021) Single-atom catalysts for electrochemical energy storage and conversion. J Energy Chem 63:170–194

    Article  Google Scholar 

  • Maduraiveeran G, Jin W (2021) Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Mater Sci Eng B 272:115341

    Article  Google Scholar 

  • Mancarella P (2014) MES (multienergy systems): an overview of concepts and evaluation models. Energy 65:1–17

    Article  Google Scholar 

  • Mitali J, Dhinakaran S, Mohamad AA (2022) Energy storage systems: a review. Energy Storage Saving 1:166–216

    Article  Google Scholar 

  • Najam T, Shah SSA, Peng L, Javed MS, Imran M, Zhao MQ, Tsiakaras P (2022) Synthesis and nanoengineering of MXenes for energy conversion and storage applications: recent advances and perspectives. Coord Chem Rev 454:214339

    Article  Google Scholar 

  • Pan SW, Lin HJ, Deng J, Chen PN, Chen XL, Yang ZB, Peng HS (2015) Novel wearable energy devices based on aligned carbon nanotube fiber textiles. Adv Energy Mater 5:1401438

    Article  Google Scholar 

  • Pan S, Ren J, Fang X, Peng H (2016) Integration: an effective strategy to develop multifunctional energy storage devices. Adv Energy Mater 6:1501867

    Article  Google Scholar 

  • Shabangoli Y, Rahmanifar MS, El-Kady MF, Noori A, Mousavi MF, Kaner RB (2018) An integrated electrochemical device based on earth-abundant metals for both energy storage and conversion. Energy Stor Mater 11:282–293

    Google Scholar 

  • Sikiru S, Oladosu TL, Kolawole SY, Mubarak LA, Soleimani H, Afolabi LO, Toyin AOO (2023) Advance and prospect of carbon quantum dots synthesis for energy conversion and storage application: A comprehensive review. J Energy Storage 60:106556

    Article  Google Scholar 

  • Sun J, Kong W, Jin Z, Han Y, Ma L, Ding X, Niu Y, Xu Y (2020) Recent advances of MXene as promising catalysts for electrochemical nitrogen reduction reaction. Chin Chem Lett 31:953–960

    Article  Google Scholar 

  • Tang X, Guo X, Wu W, Wang G (2018) 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-based batteries. Adv Energy Mater 8:1801897

    Article  Google Scholar 

  • Tian Y, Cong S, Su W, Chen H, Li Q, Geng F, Zhao Z (2014) Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett 14:2150–2156

    Article  Google Scholar 

  • Venkatesan SV, Nandy A, Karan K, Larter SR, Thangadurai V (2022) Recent advances in the unconventional design of electrochemical energy storage and conversion devices. Electrochem Energy Rev 5:16

    Article  Google Scholar 

  • Vlad A, Singh N, Galande C, Ajayan PM (2015) Design considerations for unconventional electrochemical energy storage architectures. Adv Energy Mater 5:1402115

    Article  Google Scholar 

  • Wang G, Lu Z, Li Y, Li L, Ji H, Feteira A, Zhou D, Wang D, Zhang S, Reaney IM (2021) Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev 121:6124–6172

    Article  Google Scholar 

  • Wu C, Lu X, Peng L, Xu K, Peng X, Huang J, Yu G, Xie Y (2013) Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat Commun 4:2431

    Article  Google Scholar 

  • Wu ZS, Liu Z, Parvez K, Feng X, Muellen K (2015) Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv Mater 27:3669

    Article  Google Scholar 

  • Xu R, Du L, Adekoya D, Zhang G, Zhang S, Sun S, Lei Y (2021) Well-defined nanostructures for electrochemical energy conversion and storage. Adv Energy Mater 11:2001537

    Article  Google Scholar 

  • Yaqoot M, Diwan P, Kandpal TC (2016) Review of barriers to the dissemination of decentralized renewable energy systems. Renew Sustain Energ Rev 58:477–490

    Article  Google Scholar 

  • Zhang X, Cheng X, Zhang Q (2016) Nanostructured energy materials for electrochemical energy conversion and storage: a review. J Energy Chem 25:967–984

    Article  Google Scholar 

  • Zhang G, Hu J, Nie Y, Zhao Y, Wang L, Li Y, Liu H, Tang L, Zhang X, Li D, Sun L, Duan H (2021) Integrating flexible ultralight 3D Ni micromesh current collector with NiCo bimetallic hydroxide for smart hybrid supercapacitors. Adv Funct Mater 31:2100290

    Article  Google Scholar 

  • Zhao M, Peng HJ, Zhang ZW, Li BQ, Chen X, Xie J, Chen X, Wei JY, Zhang Q, Huang JQ (2019) Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal. Angew Chem 131:3819–3823

    Article  Google Scholar 

  • Zhao Y, Liu H, Yan Y, Chen T, Yu H, Ejeta LO, Zhang G, Duan H (2023) Flexible transparent electrochemical energy conversion and storage: from electrode structures to integrated applications. Energy Environ Mater 6:e12303

    Article  Google Scholar 

  • Zheng Y, Zhou T, Zhao X, Pang WK, Gao H, Li S, Zhou Z, Liu H, Guo Z (2017) Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv Mater 29:1700396

    Article  Google Scholar 

  • Zheng Y, Li X, Pi C, Song H, Gao B, Chu PK, Huo K (2020) Recent advances of two-dimensional transition metal nitrides for energy storage and conversion applications. FlatChem 19:100149

    Article  Google Scholar 

  • Zhou M, Wang HL, Guo S (2016) Toward high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem Soc Rev 45:1273–1307

    Article  Google Scholar 

  • Zu L, Zhang W, Qu L, Liu L, Li W, Yu A, Zhao D (2020) Mesoporous materials for electrochemical energy storage and conversion. Adv Energy Mater 10:2002152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turkan Kopac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kopac, T. (2024). Electrochemical Energy Conversion and Storage Strategies. In: Kumar, A., Gupta, R.K. (eds) Atomically Precise Electrocatalysts for Electrochemical Energy Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-54622-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54622-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54621-1

  • Online ISBN: 978-3-031-54622-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics