Skip to main content

Electrocatalytic Properties of Atomically Precise Electrocatalysts

  • Chapter
  • First Online:
Atomically Precise Electrocatalysts for Electrochemical Energy Applications

Abstract

A well-defined model nanocatalyst is absolutely necessary to reveal the detailed mechanism of electro-catalysis and thereby to lead to the development of a new efficient electro-catalyst. Atomically regulated metal nanoclusters will allow us to systematically optimize the electrochemical and surface properties suitable for electro-catalysis, giving a potent platform for precisely tuned electro-catalysis. Nanoclusters are made up of metal atoms and ligands with diameters ranging from 2 to 3 nm. Gold nanoclusters with precise atomic numbers have received a lot of attention due to their stability and unusual structure. More new ways for synthesizing atomically accurate gold nanoclusters have been developed as a result of more extensive research on gold nanoclusters. Recent advances in the electrochemistry of atomically accurate metal nanoclusters and their applications in electro-catalysis are discussed in this account. Other metal nanoclusters have made far less progress in electrochemical investigations than gold nanoclusters; hence, this chapter focuses on electro-catalyst applications of metal-based nanoclusters. Voltammetry has proven to be particularly effective in studying the electrical structure of metal nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aet Y (2023) Covalence bridge atomically precise metal nanocluster and metal-organic frameworks for enhanced photostability and photocatalysis. Nano Res 16:1527–1532

    Article  Google Scholar 

  • Antoine R (2020) Supramolecular gold chemistry: from atomically precise thiolateprotected gold nanoclusters to gold-thiolate nanostructures. Nanomaterials 10:377

    Article  Google Scholar 

  • Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Splitting water with cobalt. AngewandteChemie Int Ed 50(32):7238–7266

    Article  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Hoboken, NJ. ISBN 0-471-04372-9. OCLC 43859504

    Google Scholar 

  • Bard AJ, Faulkner LR (2001b) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  • Brown MD, Schoenfisch MH (2019) Electrochemical nitric oxide sensors: principles of design and characterization. Chem Rev 119(22):11551–11575

    Article  Google Scholar 

  • Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38(12):4901–4934

    Article  Google Scholar 

  • Chakraborty I, Pradeep T (2017) Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev 117(12):8208–8271

    Article  Google Scholar 

  • Chen W, Chen S (2009) Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. Angew Chem Int Ed 48:4386–4389

    Article  Google Scholar 

  • Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD (2020) Fundamentals, applications, and future directions of bioelectrocatalysis. Chem Rev 120(23):12903–12993

    Article  Google Scholar 

  • Dai L (2017) Carbon-based catalysts for metal-free electrocatalysis. Curr Opin Electrochem 4(1):18–25

    Article  Google Scholar 

  • Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401):43–51

    Article  Google Scholar 

  • He X, Gao CY, Wang MX, Zhao L (2012) Designed synthesis of a metal cluster-pillared coordination cage. Chem Commun 48:10877–10879

    Article  Google Scholar 

  • Hesari M, Ding ZA (2017) Grand avenue to au nanocluster electrochemiluminescence. Acc Chem Res 50:218–230

    Article  Google Scholar 

  • Ito S, Takano S, Tsukuda T (2019) Alkynyl-protected Au22(C≡CR)18 clusters featuring new interfacial motifs and R-dependent photoluminescence. J Phys Chem Lett 10:6892–6896

    Article  Google Scholar 

  • Jaramillo T (2014) Electrocatalysis 101 | GCEP Symposium

    Google Scholar 

  • Jiao L, Wang Y, Jiang H-L, Xu Q (2017) Metal-organic frameworks as platforms for catalytic applications. Adv Mater 30(37):1703663

    Article  Google Scholar 

  • Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2:343–362

    Article  Google Scholar 

  • Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116:10346–10413

    Article  Google Scholar 

  • Kang X, Li Y, Zhu M, Jin R (2020) Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem Soc Rev 49:6443–6514

    Article  Google Scholar 

  • Kleijn SEF, Lai SCS, Koper MTM, Unwin PR (2014) Electrochemistry of nanoparticles. AngewandteChemie Int Ed 53(14):3558–3586

    Google Scholar 

  • Koper MTM (2011) Structure sensitivity and nanoscale effects in electro-catalysis. Nanoscale R Soc Chem 3(5):2054–2073

    Article  Google Scholar 

  • Kotrel S, BrUninger S (2008) Industrial electrocatalysis. Handbook of Heterogeneous Catalysis

    Google Scholar 

  • Lenne Q, Retout M, Gosselin B, Bruylants G, Jabin I, Hamon J, Lagrost C, Leroux YR (2020) Highly stable silver nanohybrid electrocatalysts for the oxygen reduction reaction. Chem Commun 58:3334–3337

    Article  Google Scholar 

  • Levi-Kalisman Y, Jadzinsky PD, Kalisman N, Tsunoyama H, Tsukuda A, Bushnell KRD (2011) Synthesis and characterization of Au102(p-MBA)44 nanoparticles. J Am Chem Soc 133:2976–2982

    Article  Google Scholar 

  • Li C, Chai OJH, Yao Q, Liu Z, Wang L, Wang H, Xie J (2021) Electrocatalysis of gold-based nanoparticles and nanoclusters. Mater Horiz 8:1657–1682

    Article  Google Scholar 

  • Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118:4981–5079

    Article  Google Scholar 

  • Lu Y, Jiang Y, Gao X, Chen W (2014) Charge state-dependent catalytic activity of [Au 25 (SC 12 H 25) 18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide. Chem Commun 50:8464–8467

    Article  Google Scholar 

  • Luo M, Guo S (2017) Strain-controlled electro-catalysis on multimetallic nanomaterials. Nat Rev Mater 2(11):17059

    Article  MathSciNet  Google Scholar 

  • McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108(7):2646–2687

    Article  Google Scholar 

  • Met Z (2009) Reversible switching of magnetism in thiolate-protected Au25 superatom. J Am Chem Soc 131:2490–2492

    Article  Google Scholar 

  • Milton RD, Minteer SD (2019) Nitrogenase bioelectrochemistry for synthesis applications. Acc Chem Res 52(12):3351–3360

    Article  Google Scholar 

  • Mistry H, Varela AS, Strasser P, Cuenya BR (2016) Nanostructured electro-catalysts with tunable activity and selectivity. Nat Rev Mater 1(4):1–14

    Article  Google Scholar 

  • Qiao Y, Bao S-J, Li CM (2010) Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry. Energy Environ Sci 3(5):544

    Article  Google Scholar 

  • Seh Zhi W, Kibsgaard J, Dickens Colin F, Chorkendorff I, Norskov Jens K, Jaramillo Thomas F (2017) Combining theory and experiment in electrocatalysis: insights intomaterials design. Science 355(6321):eaad4998

    Google Scholar 

  • Shang L, Xu J, Nienhaus GU (2019) Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today 28:100767

    Article  Google Scholar 

  • Sharma RK, Yadav P, Yadav M, Gupta R, Rana P, Srivastava A, Zbořil R, Varma RS, Antonietti M, Gawande MB (2020) Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater Horizons 7(2):411–454

    Article  Google Scholar 

  • She ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electro-catalysis: insights into materials design. Science 355:eaad4998

    Google Scholar 

  • Shi Y, Lyu Z, Zhao M, Chen R, Nguyen QN, Xia Y (2021) Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem Rev 121(2):649–735

    Article  Google Scholar 

  • Sumner L, Sakthivel NA, Schrock H, Artyushkova K, Dass A, Chakraborty S (2018) Electrocatalytic oxygen reduction activities of thiol-protected nanomolecules ranging in size from Au28(SR)20 to Au279(SR)84. J Phys Chem C 122:24809–24817

    Article  Google Scholar 

  • Tang Q, Lee Y, Li D-Y, Choi W, Liu CW, Lee D, Jiang D-E (2017) Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J Am Chem Soc 139:9728–9736

    Article  Google Scholar 

  • Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36

    Article  Google Scholar 

  • Tian S, Liao L, Yuan J, Yao C, Chen J, Yang J, Wu Z (2016) Structures and magnetism of mono-palladium and mono-platinum doped Au25(PET)18 nanoclusters. Chem Commun 52:9873–9876

    Article  Google Scholar 

  • Walter M (2008) A unified view of ligand-protected gold clusters as super atom complexes. Proc Natl Acad Sci USA 105:9157–9162

    Article  Google Scholar 

  • Wang X (2009) CNTs tuned to provide electro-catalyst support. Nanotechweb.org. Archived from the original on 22 2009

    Google Scholar 

  • Wang S, Yu H, Zhu M (2015) [PDF] Noble and valuable: atomically precise gold nanoclusters. Sci China: Chem 59:206–208

    Article  Google Scholar 

  • Wang L, Tang Z, Yan W, Yang H, Wang Q, Chen S (2016a) Porous carbon-supported gold nanoparticles for oxygen reduction reaction: effects of nanoparticle size. ACS Appl Mater Interfaces 8:20635–20641

    Article  Google Scholar 

  • Wang Q, Wang L, Tang Z, Wang F, Yan W, Yang H, Zhou W, Li L, Kang X, Chen S (2016b) Hybrid nanomaterials based on graphene and gold nanoclusters for efficient electrocatalytic reduction of oxygen. Nanoscale 8:6629–6635

    Article  Google Scholar 

  • Wildgoose GG, Banks CE, Leventis HC, Compton RG (2005) Chemically modified carbon nanotubes for use in electroanalysis. Microchimica Acta 152(3–4):187–214

    Google Scholar 

  • Yamazoe S, Koyasu K, Tsukuda T (2014) Nonscalable oxidation catalysis of gold clusters. Acc Chem Res 47:816–824

    Article  Google Scholar 

  • Yang JY, Kerr TA, Wang XS, Barlow JM (2020) Reducing co2 to hco2–at mild potentials: lessons from formate dehydrogenase. J Am Chem Soc 142(46):19438–19445

    Article  Google Scholar 

  • Zeng C, Li T, Das A, Rosi NL, Jin R (2013) Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. J Am Chem Soc 135:10011–10013

    Article  Google Scholar 

  • Zhang Q, Zhang X, Wang J, Wang C (2021) Graphene-supported single-atom catalysts and applications in electrocatalysis. Nanotechnology 32(3):032001

    Article  Google Scholar 

  • Zheng W, Liu M, Lee LYS (2020) Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal 10(1):81–92

    Article  Google Scholar 

  • Zhu X, Chen L, Liu Y (2023) Atomically precise Au nanoclusters for electrochemical hydrogen evolution catalysis: progress and perspectives. Polyoxometalates 2(4):9140031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedhi Chinnapaiyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Senthurpandi, K., Ramar, K., Petchimuthu, K., Chinnapaiyan, V. (2024). Electrocatalytic Properties of Atomically Precise Electrocatalysts. In: Kumar, A., Gupta, R.K. (eds) Atomically Precise Electrocatalysts for Electrochemical Energy Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-54622-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54622-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54621-1

  • Online ISBN: 978-3-031-54622-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics