Skip to main content

Abstract

Metal-sulfur batteries offer promising energy density and cost-effectiveness, yet grapple with challenges like limited conductivity and rapid capacity degradation. The advent of multi-atom catalysts has revolutionized these batteries, addressing these issues. This chapter explores the design, synthesis, and performance of such catalysts, initiating with an overview of the challenges faced by metal-sulfur batteries and the necessity for enhanced catalysts. It delves into multi-atom catalysts, emphasizing their distinctive features and synthesis methods. The intricate interplay between composition, morphology, and structure is scrutinized for effective catalyst design. Advanced characterization approaches are highlighted for comprehending electrochemical behavior. The chapter discusses contemporary research showcasing the transformative potential of multi-atom catalysts in metal-sulfur batteries, encompassing catalytic activity, charge transfer kinetics, polysulfide conversion, and cycling stability. The conclusion addresses future prospects and challenges, underscoring the continual need for research to optimize catalyst design, scalability, and long-term stability for practical integration into large-scale energy storage systems. In summary, the chapter serves as a substantial resource for academia and engineering, providing a comprehensive overview of the pivotal role played by multi-atom catalysts in advancing metal-sulfur battery technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed MS, Lee S, Agostini M, Jeong MG, Jung HG, Ming J, Sun YK, Kim J, Hwang JY (2021) Multiscale understanding of covalently fixed sulfur–polyacrylonitrile composite as advanced cathode for metal–sulfur batteries. Adv Sci 8(21):2101123

    Google Scholar 

  • Ahmed MD, Maraz KM (2023) Revolutionizing energy storage: overcoming challenges and unleashing the potential of next generation Lithium-ion battery technology. Mater Eng Res 5(1):265–278

    Google Scholar 

  • Arul V, Chandrasekaran P, Sivaraman G, Sethuraman MG (2023a) Biogenic preparation of undoped and heteroatoms doped carbon dots: effect of heteroatoms doping in fluorescence, catalytic ability and multicolour in-vitro bio-imaging applications–a comparative study. Mater Res Bull 162:112204

    Google Scholar 

  • Arul V, Sampathkumar N, Kotteeswaran S, Arul P, Aljuwayid AM, Habila MA, Govindasamy M (2023b) Biomass derived nitrogen functionalized carbon nanodots for nanomolar determination of levofloxacin in pharmaceutical and water samples. Microchim Acta 190(6):242

    Google Scholar 

  • Baumann AE, Burns DA, Liu B, Thoi VS (2019) Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun Chem 2(1):86

    Google Scholar 

  • Bhardwaj RK, Zitoun D (2023) Recent progress in solid electrolytes for all-solid-state metal (Li/Na)–sulfur batteries. Batteries 9(2):110

    Google Scholar 

  • Cengiz EC, Salihoglu O, Ozturk O, Kocabas C, Demir-Cakan R (2019) Ultra-lightweight chemical vapor deposition grown multilayered graphene coatings on paper separator as interlayer in lithium-sulfur batteries. J Alloys Compd 777:1017–1024

    Google Scholar 

  • Chen R, Li Q, Yu X, Chen L, Li H (2019) Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev 120(14):6820–6877

    Google Scholar 

  • Chen S, Zhang Z, Wang J, Dong P (2023) A bimetallic organic framework with Mn in MIL-101(Cr) for lithium–sulfur batteries. Materials 16(10):3794. https://doi.org/10.3390/ma16103794

  • Dong Y, Cai D, Li T, Yang S, Zhou X, Ge Y, Tang H, Nie H, Yang Z (2022) Sulfur reduction catalyst design inspired by elemental periodic expansion concept for lithium–sulfur batteries. ACS Nano 16(4):6414–6425

    Google Scholar 

  • Du W, Shen K, Qi Y, Gao W, Tao M, Du G, Bao SJ, Chen M, Chen Y, Xu M (2021) Efficient catalytic conversion of polysulfides by biomimetic design of “branch-leaf” electrode for high-energy sodium–sulfur batteries. Nano-Micro Lett 13:1–3

    Google Scholar 

  • Eng AY, Kumar V, Zhang Y, Luo J, Wang W, Sun Y, Li W, Seh ZW (2021) Room-temperature sodium–sulfur batteries and beyond: realizing practical high energy systems through anode, cathode, and electrolyte engineering. Adv Energy Mater 11(14):2003493

    Google Scholar 

  • Fang R, Xu J, Wang DW (2020) Covalent fixing of sulfur in metal–sulfur batteries. Energy Environ Sci 13(2):432–471

    Google Scholar 

  • Gong Y, Li J, Yang K, Li S, Xu M, Zhang G, Shi Y, Cai Q, Li H, Zhao Y (2023) Towards practical application of Li–S battery with high sulfur loading and lean electrolyte: will carbon-based hosts win this race? Nano-Micro Lett 15(1):150

    Google Scholar 

  • Hu L, Dai C, Lim JM, Chen Y, Lian X, Wang M, Li Y, Xiao P, Henkelman G, Xu M (2018) A highly efficient double-hierarchical sulfur host for advanced lithium–sulfur batteries. Chem Sci 9(3):666–675

    Article  Google Scholar 

  • Jiang M, Wu J, Guo H, Zhang H, Zhu M, Xu X (2022) Controlled synthesis of cube-like ZnSnO3 decorated by nickel-based films and electrochemical applications on lithium-sulfur batteries. Compos Interfaces 29(11):1217–1228

    Google Scholar 

  • Kaneti YV, Tang J, Salunkhe RR, Jiang X, Yu A, Wu KC, Yamauchi Y (2017) Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv Mater 29(12):1604898

    Google Scholar 

  • Kim SJ, Kim K, Park J, Sung YE (2019) Role and potential of metal sulfide catalysts in lithium-sulfur battery applications. ChemCatChem 11(10):2373–2387

    Google Scholar 

  • Liu D, Li Z, Li X, Cheng Z, Yuan L, Huang Y (2019) Recent advances in cathode materials for room‐temperature sodium−sulfur batteries. ChemPhysChem 20(23):3164–3176

    Google Scholar 

  • Liu YT, Liu S, Li GR, Yan TY, Gao XP (2020) High volumetric energy density sulfur cathode with heavy and catalytic metal oxide host for lithium–sulfur battery. Adv Sci 7(12):1903693

    Google Scholar 

  • Liu S, Song Z, Jin X, Mao R, Zhang T, Hu F (2022) MXenes for metal-ion and metal-sulfur batteries: synthesis, properties, and electrochemistry. Mater Rep: Energy 2(1):100077

    Google Scholar 

  • Ma L, Lv Y, Wu J, Chen Y, Jin Z (2021) Recent advances in emerging non-lithium metal–sulfur batteries: a review. Adv Energy Mater 11(24):2100770

    Google Scholar 

  • Roy A, Chakrabarty N, Krishna MS, Mitra S (2022) Kinetics of polysulfide on metal-sulfur batteries. In: Sulfide and selenide based materials for emerging applications. Elsevier, pp 679–713

    Google Scholar 

  • Salama M, Rosy AR, Yemini R, Gofer Y, Aurbach D, Noked M (2019) Metal–sulfur batteries: overview and research methods. ACS Energy Lett 4(2):436–446

    Google Scholar 

  • Soni CB, Vineeth SK, Kumar V (2021) Unveiling the physiochemical aspects of the matrix in improving sulfur-loading for room-temperature sodium–sulfur batteries. Mater Adv 2(13):4165–4189

    Google Scholar 

  • Wang R, Li M, Zhang Y, Sun K, Bao W (2022) Atomic surface modification strategy of MXene materials for high performance metal sulfur batteries. Int J Energy Res 46(9):11659–11675

    Google Scholar 

  • Wang J, Xu J, Huang Z, Fan G. Preparation of nitrogen-doped three-dimensional hierarchical porous carbon/sulfur composite cathodes for high-performance aluminum-sulfur batteries. Fullerenes, Nanotubes, Carbon Nanostruct 29(1):39–45

    Google Scholar 

  • Wang L, Zhen M, Hu Z (2023) Status and prospects of electrocatalysts for lithium-sulfur battery under lean electrolyte and high sulfur loading conditions. Chem Eng J 452:139344

    Google Scholar 

  • Yan B, Li X, Bai Z, Song X, Xiong D, Zhao M, Li D, Lu S (2017) A review of atomic layer deposition providing high performance lithium sulfur batteries. J Power Sources 338:34–48

    Google Scholar 

  • Yang K, Guo Q, Li H, Hao X, Ma Y, Yang M, Zhai T, Savilov SV, Lunin VV, Xia H (2018) Highly efficient sol-gel synthesis for ZnS@ N, S co-doped carbon nanosheets with embedded heterostructure for sodium ion batteries. J Power Sources 402:340–344

    Google Scholar 

  • Yao Y, Chen J, Niu R, Zhao Z, Wang X (2021) High-entropy materials: features for lithium–sulfur battery applications. Metals 13(5):833; Yan R, Ma T, Cheng M, Tao X, Yang Z, Ran F, Li S, Yin B, Cheng C, Yang W (2021) Metal–organic framework derived nanostructures as multifaceted electrodes in metal–sulfur batteries. Adv Mater 33(27):2008784

    Google Scholar 

  • Ye Z, Jiang Y, Qian J, Li W, Feng T, Li L, Wu F, Chen R (2019) Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium–sulfur batteries. Nano Energy 64:103965

    Google Scholar 

  • Ye H, Li Y (2022) Room temperature metal–sulfur batteries: what can we learn from lithium–sulfur? InfoMat 4(5):e12291

    Google Scholar 

  • Yu X, Ding Y, Sun J (2023) Design principles for 2D transition metal dichalcogenides toward lithium−sulfur batteries. Iscience

    Google Scholar 

  • Yu X, Manthiram A (2021) Sustainable battery materials for next‐generation electrical energy storage. Adv Energy Sustain Res 2(5):2000102

    Google Scholar 

  • Zeng L, Zhu J, Chu PK, Huang L, Wang J, Zhou G, Yu XF (2022) Catalytic effects of electrodes and electrolytes in metal–sulfur batteries: progress and prospective. Adv Mater 34(49):2204636

    Google Scholar 

  • Zhang B, Zhao Y, Liu J, Wang X, Li D, Li X (2017) Impact of micro-/mesoporous carbonaceous structure on electrochemical performance of sulfur. Electrochimica Acta 248:416–424

    Google Scholar 

  • Zhu R, Zheng W, Yan R, Wu M, Zhou H, He C, Liu X, Cheng C, Li S, Zhao C (2022) Modulating bond interactions and interface microenvironments between polysulfide and catalysts toward advanced metal–sulfur batteries. Adv Funct Mater 32(45):2207021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Arul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arul, V., Radhakrishnan, K., Yogeshwari, B. (2024). Multi-atom Catalysts for Metal-Sulfur Batteries. In: Kumar, A., Gupta, R.K. (eds) Atomically Precise Electrocatalysts for Electrochemical Energy Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-54622-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54622-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54621-1

  • Online ISBN: 978-3-031-54622-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics