Skip to main content
  • 60 Accesses

Abstract

Lithium-sulfur batteries (LSBs) are recognized as a prospective contender for future-generation electrochemical energy storage technologies due to their high theoretical energy density, affordable price, and ecological sustainability. However, challenges such as the slow redox kinetics of sulfur species and the shuttle effect cause a significant amount of capacity loss and polarization. These problems have been addressed using a variety of methodologies, such as physical barriers, chemical adsorption techniques, and electrocatalysts, which have improved the rate capability and cycle performance of sulfur electrodes. Recently, the integration of single-atom catalysts (SACs) with high catalytic efficiency has been introduced in LSBs to expedite sulfur conversion kinetics, aiming to boost their conversion rates. This chapter provides a concise overview of recent advancements in enhancing the electrochemical performance of LSB cathodes through the incorporation of various SACs. It delves into the catalytic mechanisms employed by SACs and explores synthesis methods, including the spatial confinement approach and coordination design strategy. This chapter also discusses challenges in designing high-performance sulfur electrodes and proposes potential solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chakthranont P, Kibsgaard J, Gallo A, Park J, Mitani M, Sokaras D, Kroll T, Sinclair R, Mogensen MB, Jaramillo TF (2017) Effects of gold substrates on the intrinsic and extrinsic activity of high-loading nickel-based oxyhydroxide oxygen evolution catalysts. Acs Catal 7(8):5399–5409

    Google Scholar 

  • Deng DH, Chen XQ, Yu L, Wu X, Liu QF, Liu Y, Yang HX, Tian HF, Hu YF, Du PP, Si R, Wang JH, Cui XJ, Li HB, Xiao JP, Xu T, Deng J, Yang F, Duchesne PN, Zhang P, Zhou JG, Sun LT, Li JQ, Pan XL, Bao XH (2015) A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci Adv 1(11)

    Google Scholar 

  • Didwal PN, Nguyen AG, Maddukuri S, Verma R, Gupta RK (eds) (2023) Metal-air batteries, non-aqueous electrolytes in metal-air batteries. Boca Raton, CRC Press

    Google Scholar 

  • Du ZZ, Chen XJ, Hu W, Chuang CH, Xie S, Hu AJ, Yan WS, Kong XH, Wu XJ, Ji HX, Wan LJ (2019) Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J Am Chem Soc 141(9):3977–3985

    Google Scholar 

  • Gawande MB, Fornasiero P, Zboril R (2020) Carbon-based single-atom catalysts for advanced applications. Acs Catal 10(3):2231–2259

    Google Scholar 

  • Fei HL, Dong JC, Wan CZ, Zhao ZP, Xu X, Lin ZY, Wang YL, Liu HT, Zang KT, Luo J, Zhao SL, Hu W, Yan WS, Shakir I, Huang Y, Duan XF (2018) Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv Mater 30(35)

    Google Scholar 

  • Ji SF, Chen YJ, Wang XL, Zhang ZD, Wang DS, Li YD (2020) Chemical synthesis of single atomic site catalysts. Chem Rev 120(21):11900–11955

    Google Scholar 

  • Jiang M, Yang J, Ju J, Zhang W, He L, Zhang J, Fu CP, Sun BD (2020) Space-confined synthesis of CoNi nanoalloy in N-doped porous carbon frameworks as efficient oxygen reduction catalyst for neutral and alkaline aluminum-air batteries. Energy Storage Mater 27:96–108

    Google Scholar 

  • Kim J, Kim HE, Lee H (2018) Single-atom catalysts of precious metals for electrochemical reactions. Chemsuschem 11(1):104–113

    Google Scholar 

  • Kim HB, Ngo DT, Verma R, Singhbabu YN, Kim DY, Le HTT, Mali SS, Hong CK, Park CJ (2021) Vanadium nitride and carbon nanofiber composite membrane as an interlayer for extended life cycle lithium-sulphur batteries. Ceram Int 47(15):21476–21489

    Google Scholar 

  • Li YJ, Chen GL, Mou JR, Liu YZ, Xue SF, Tan T, Zhong WT, Deng Q, Li T, Hu JH, Yang CH, Huang K, Liu ML (2020) Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium-sulfur batteries. Energy Storage Mater 28:196–204

    Google Scholar 

  • Li BQ, Kong L, Zhao CX, Jin Q, Chen X, Peng HJ, Qin JL, Chen JX, Yuan H, Zhang Q, Huang JQ (2019) Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. Infomat 1(4):533–541

    Google Scholar 

  • Lim WG, Mun Y, Cho A, Jo CS, Lee S, Han JW, Lee J (2018) Synergistic effect of molecular-type electrocatalysts with ultrahigh pore volume carbon microspheres for lithium-sulfur batteries. ACS Nano 12(6):6013–6022

    Google Scholar 

  • Liu ZZ, Zhou L, Ge Q, Chen RJ, Ni M, Utetiwabo W, Zhang XL, Yang W (2018) Atomic iron catalysis of polysulfide conversion in lithium-sulfur batteries. Acs Appl Mater Inter 10(23):19311–19317

    Google Scholar 

  • Lu C, Fang RY, Chen X (2020) Single-atom catalytic materials for advanced battery systems. Adv Mater 32(16)

    Google Scholar 

  • Miner EM, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dinca M (2016) Electrochemical oxygen reduction catalysed by Ni(hexaiminotriphenylene). Nat Commun 7

    Google Scholar 

  • Moon S, Jung YH, Jung WK, Jung DS, Choi JW, Kim DK (2013) Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries. Adv Mater 25(45):6547–6553

    Google Scholar 

  • Nguyen AG, Le HTT, Verma R, Vu DL, Park CJ (2022) Boosting sodium-ion battery performance using an antimony nanoparticle self-embedded in a 3D nitrogen-doped carbon framework anode. Chem Eng J 429

    Google Scholar 

  • Nguyen AG, Verma R, Didwal PN, Park CJ (2023) Challenges and design strategies for alloy-based anode materials toward high-performance future- generation potassium-ion batteries. Energy Mater 3(4)

    Google Scholar 

  • Nguyen AG, Verma R, Song GC, Kim J, Park CJ (2023) In situ polymerization on a 3D ceramic framework of composite solid electrolytes for room-temperature solid-state batteries. Adv Sci 10(21)

    Google Scholar 

  • Pang Q, Liang X, Kwok CY, Nazar LF (2016) Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1

    Google Scholar 

  • Parkinson GS (2019) Single-atom catalysis: how structure influences catalytic performance. Catal Lett 149(5):1137–1146

    Google Scholar 

  • Peng HJ, Huang JQ, Liu XY, Cheng XB, Xu WT, Zhao CZ, Wei F, Zhang Q (2017) Healing high-loading sulfur electrodes with unprecedented long cycling life: spatial heterogeneity control. J Am Chem Soc 139(25):8458–8466

    Google Scholar 

  • Peng Y, Lu BZ, Chen SW (2018) Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv Mater 30(48)

    Google Scholar 

  • Qiao BT, Wang AQ, Yang XF, Allard LF, Jiang Z, Cui YT, Liu JY, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3(8):634–641

    Google Scholar 

  • Rivera-Cárcamo C, Serp P (2018) Single atom catalysts on carbon-based materials. ChemCatChem 10(22):5058–5091

    Google Scholar 

  • Shi HD, Ren XM, Lu JM, Dong C, Liu J, Yang QH, Chen J, Wu ZS (2020) Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv Energy Mater 10(39)

    Google Scholar 

  • Sun SH, Zhang GX, Gauquelin N, Chen N, Zhou JG, Yang SL, Chen WF, Meng XB, Geng DS, Banis MN, Li RY, Ye SY, Knights S, Botton GA, Sham TK, Sun XL (2013) Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep 3

    Google Scholar 

  • Verma R, Didwal PN, Ki HS, Cao G, Park CJ (2019) SnP3/Carbon nanocomposite as an anode material for potassium-ion batteries. ACS Appl Mater Interfaces 11(30):26976–26984

    Google Scholar 

  • Vu DL, Kim D, Nguyen AG, Park CJ (2022) Stabilizing interface of novel 3D-hierarchical porous carbon for high-performance lithium-sulfur batteries. Electrochim Acta 418

    Google Scholar 

  • Walus S, Barchasz C, Bouchet R, Leprêtre JC, Colin JF, Martin JF, Elkaïm E, Baehtz C, Alloin F (2015) Lithium/sulfur batteries upon cycling: structural modifications and species quantification by in situ and operando X-Ray diffraction spectroscopy. Adv Energy Mater 5(16)

    Google Scholar 

  • Wang YC, Chu FL, Zeng J, Wang QJ, Naren TY, Li YY, Cheng Y, Lei YP, Wu FX (2021) Single atom catalysts for fuel cells and rechargeable batteries: principles. Adv, Oppor, Acs Nano 15(1):210–239

    Google Scholar 

  • Wang J, Jia LJ, Duan SR, Liu HT, Xiao QB, Li T, Fan HY, Feng K, Yang J, Wang Q, Liu MN, Zhong J, Duan WH, Lin HZ, Zhang YG (2020) Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode. Energy Storage Mater 28:375–382

    Google Scholar 

  • Wang A, Li J, Zhang T (2018) Heterogeneous single-atom catalysis. Nat Rev Chem 2:65–81

    Google Scholar 

  • Wu JL, Chen JM, Huang Y, Feng K, Deng J, Huang W, Wu YL, Zhong J, Li YG (2019) Cobalt atoms dispersed on hierarchical carbon nitride support as the cathode electrocatalyst for high-performance lithium-polysulfide batteries. Sci Bull 64(24):1875–1880

    Google Scholar 

  • Xiao R, Chen K, Zhang X, Yang Z, Hu G, Sun Z, Cheng H, Li F (2021) Single-atom catalysts for metal-sulfur batteries: current progress and future perspectives. J Energy Chem 54:452–466

    Google Scholar 

  • Xu R, Lu J, Amine K (2015) Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv Energy Mater 5(16)

    Google Scholar 

  • Yang L, Shi L, Wang D, Lv YL, Cao DP (2018) Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 50:691–698

    Google Scholar 

  • Yang XF, Wang AQ, Qiao BT, Li J, Liu JY, Zhang T (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts Chem Res 46(8):1740–1748

    Google Scholar 

  • Yun JH, Kim JH, Kim DK, Lee HW (2018) Suppressing polysulfide dissolution via cohesive forces by interwoven carbon nanofibers for high-areal-capacity lithium-sulfur batteries. Nano Lett 18(1):475–481

    Google Scholar 

  • Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162

    Google Scholar 

  • Zhang L, Liang P, Shu HB, Man XL, Du XQ, Chao DL, Liu ZG, Sun YP, Wan HZ, Wang H (2018a) Design rules of heteroatom-doped graphene to achieve high performance lithium-sulfur batteries: both strong anchoring and catalysing based on first principles calculation. J Colloid Interf Sci 529:426–431

    Google Scholar 

  • Zhang ZQ, Liu JP, Curcio A, Wang YH, Wu JX, Zhou GD, Tang ZH, Ciucci F (2020) Atomically dispersed materials for rechargeable batteries. Nano Energy 76

    Google Scholar 

  • Zhang LL, Liu DB, Muhammad Z, Wan F, Xie W, Wang YJ, Song L, Niu ZQ, Chen J (2019) Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv Mater 31(40)

    Google Scholar 

  • Zhang BW, Sheng T, Liu YD, Wang YX, Zhang L, Lai WH, Wang L, Yang JP, Gu QF, Chou SL, Liu HK, Dou SK (2018) Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nat Commun 9

    Google Scholar 

  • Zhang D, Wang S, Hu RM, Gu JA, Cui YLS, Li B, Chen WH, Liu CT, Shang JX, Yang SB (2020) Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv Funct Mater 30(30)

    Google Scholar 

  • Zhao L, Zhang Y, Huang LB, Liu XZ, Zhang QH, He C, Wu ZY, Zhang LJ, Wu JP, Yang WL, Gu L, Hu JS, Wan LJ (2019) Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat Commun 10

    Google Scholar 

  • Zhou GM, Tian HZ, Jin Y, Tao XY, Liu BF, Zhang RF, Seh ZW, Zhuo D, Liu YY, Sun J, Zhao J, Zu CX, Wu DS, Zhang QF, Cui Y (2017) Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc Natl Acad Sci USA 114(5):840–845

    Google Scholar 

  • Zhou GM, Wang SY, Wang TS, Yang SZ, Johannessen B, Chen H, Liu CW, Ye YS, Wu YC, Peng YC, Liu C, Jiang SP, Zhang QF, Cui Y (2020) Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett 20(2):1252–1261

    Google Scholar 

  • Zhu C, Fu S, Shi Q, Du D, Lin Y (2017) Single-atom electrocatalysts. Angew Chem Int Ed 56(45):13944–13960

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, AG., Verma, R. (2024). Single-Atom Catalysts for Metal-Sulfur Batteries. In: Kumar, A., Gupta, R.K. (eds) Atomically Precise Electrocatalysts for Electrochemical Energy Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-54622-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54622-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54621-1

  • Online ISBN: 978-3-031-54622-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics