Skip to main content
  • 61 Accesses

Abstract

This chapter delves into the realm of multi-atom catalysts in the context of metal-air batteries. It provides a comprehensive exploration of their significance, spanning from the fundamentals of metal-air batteries to the catalytic mechanisms involved. It delves into how multi-atom catalysts enhance battery performance, featuring case studies and highlighting their role in applications such as electric vehicles and grid storage. Additionally, it scrutinizes the challenges and prospects of these catalysts in terms of sustainability and economic implications. This chapter serves as a roadmap to understanding the transformative potential of multi-atom catalysts in advancing energy storage solutions and fostering a more sustainable energy landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Awan Z, Ghouri ZK, Hashmi S (2018) Influence of Ag nanoparticles on state of the art MnO2 nanorods performance as an electrocatalyst for lithium air batteries. Int J Hydrogen Energy 43:2930–2942

    Article  Google Scholar 

  • Bezerra LS, Mooste M, Fortunato GV, Cardoso ES, Lanza MR, Tammeveski K, Maia G (2023) Tuning NiCo2O4 bifunctionality with nitrogen-doped graphene nanoribbons in oxygen electrocatalysis for zinc-air battery application. J Electroanal Chem 928:117000

    Article  Google Scholar 

  • Choi YI, Park H, Kim GP, Lim D, Jang J, Shim SE, Park SH, Baeck SH (2016) Performance evaluation of RuO2 decorated Mn-based catalysts using various carbon supports for lithium-air batteries. J Nanosci Nanotechnol 16:10459–10464

    Article  Google Scholar 

  • Chen K, Wang M, Li G, He Q, Liu J, Li F (2018) Spherical α- MnO2 supported on N-KB as efficient electrocatalyst for oxygen reduction in Al–air battery. Materials 11:601

    Article  Google Scholar 

  • Ganji F, Mohammadi K, Roozbehani B (2020) The electrocatalytic oxidation of methanol using a new modified electrode based on NiCo2O4 nanoparticles incorporated into zeolite-4A. Boletín De La Sociedad Española De Cerámica y Vidrio 59:113–120

    Article  Google Scholar 

  • Gao Y, Zheng D, Li Q, Xiao W, Ma T, Fu Y, Wu Z, Wang L (2022) 3D Co3O4- RuO2 hollow spheres with abundant interfaces as advanced trifunctional electrocatalyst for water-splitting and flexible Zn–air battery. Adv Func Mater 32:2203206

    Article  Google Scholar 

  • Goh FT, Liu Z, Ge X, Zong Y, Du G, Hor TA (2013) Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc–air battery. Electrochim Acta 114:598–604

    Article  Google Scholar 

  • Gu Y, Yan G, Lian Y, Qi P, Mu Q, Zhang C, Peng Y (2019) MnIII-enriched α- MnO2 nanowires as efficient bifunctional oxygen catalysts for rechargeable Zn-air batteries. Energy Storage Mater 23:252–260

    Article  Google Scholar 

  • Han S, Chen Y, Hao Y, Xie Y, Xie D, Chen Y, Xiong Y, He Z, Hu F, Li L, Zhu J, Peng S (2020) Multi-dimensional hierarchical CoS2@MXene as trifunctional electrocatalysts for zinc-air batteries and overall water splitting. Development 17:18

    Google Scholar 

  • Hang Y, Zhang C, Luo X, Xie Y, Xin S, Li Y, Zhang D, Goodenough JB (2018) α- MnO2 nanorods supported on porous graphitic carbon nitride as efficient electrocatalysts for lithium-air batteries. J Power Sources 392:15–22

    Article  Google Scholar 

  • Hayashi M, Nohara M, Minowa H, Asakura K, Hayashi K, Kitabayashi H (2015) Electrochemical properties of RuO2 catalyst for air electrode of lithium air battery. ECS Trans 64:1

    Article  Google Scholar 

  • Hu SJ, Fan XP, Chen J, Peng JM, Wang HQ, Huang YG, Li QY (2017) Carbon nanotubes/carbon fiber paper supported MnO2 cathode catalyst for Li− air batteries. Chem Electro Chem 4:2997–3003

    Google Scholar 

  • Huang Z, Li G, Huang Y, Gu X, Wang N, Liu J, Li OL, Shao H, Yang Y, Shi Z (2020) Facile one-pot synthesis of low cost MnO2 nanosheet/Super P Li composites with high oxygen reduction reaction activity for Zn-air batteries. J Power Sources 448:227385

    Article  Google Scholar 

  • Hyun S, Shanmugam S (2018) Hierarchical nickel–cobalt dichalcogenide nanostructure as an efficient electrocatalyst for oxygen evolution reaction and a Zn–Air battery. ACS Omega 3:8621–8630

    Article  Google Scholar 

  • Jiang M, Fu C, Yang J, Liu Q, Zhang J, Sun B (2019) Defect-engineered MnO2 enhancing oxygen reduction reaction for high performance Al-air batteries. Energy Storage Mater 18:34–42

    Article  Google Scholar 

  • Jung HG, Jeong YS, Park JB, Sun YK, Scrosati B, Lee YJ (2013) Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. ACS Nano 7:3532–3539

    Article  Google Scholar 

  • Kanagaraj I, Moni P, Prakash AS (2019) Highly nanocrystalline interconnected La0.5Ca0.5 CoO3−δ as an efficient bi-functional electrocatalyst for zinc–air batteries with structural and morphological evidence for ZnO mitigation. Sustainable Energy & Fuels 3:2657–2667

    Google Scholar 

  • Kim GP, Lim D, Park I, Park H, Shim SE, Baeck SH (2016) RuO2 nanoparticles decorated MnOOH/C as effective bifunctional electrocatalysts for lithium-air battery cathodes with long-cycling stability. J Power Sources 324:687–693

    Article  Google Scholar 

  • Kuo YL, Wu CC, Chang WS, Yang CR, Chou HL (2015) Study of poly (3, 4-ethylenedioxythiophene)/MnO2 as composite cathode materials for aluminum-air battery. Electrochim Acta 176:1324–1331

    Article  Google Scholar 

  • Kwak KH, Kim DW, Kang Y, Suk J (2016) Hierarchical Ru-and RuO2-foams as high performance electrocatalysts for rechargeable lithium–oxygen batteries. J Mater Chem A 4:16356–16367

    Article  Google Scholar 

  • Lee YJ, Park SH, Kim SH, Ko Y, Kang K, Lee YJ (2018) High-rate and high-areal-capacity air cathodes with enhanced cycle life based on RuO2/MnO2 bifunctional electrocatalysts supported on CNT for pragmatic Li–O2 batteries. ACS Catal 8:2923–2934

    Article  Google Scholar 

  • Li X, Dong F, Xu N, Zhang T, Li K, Qiao J (2018) Co3O4/MnO2/Hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc–air batteries. ACS Appl Mater Interfaces 10:15591–15601

    Article  Google Scholar 

  • Li X, Xu N, Li H, Wang M, Zhang L, Qiao J (2017) 3D hollow sphere Co3O4/ MnO2-CNTs: its high-performance bi-functional cathode catalysis and application in rechargeable zinc-air battery. Green Energy Environ 2:316–328

    Article  Google Scholar 

  • Liang Y, Gong Q, Sun X, Xu N, Gong P, Qiao J (2020) Rational fabrication of thin-layered NiCo2S4 loaded graphene as bifunctional non-oxide catalyst for rechargeable zinc-air batteries. Electrochim Acta 342:136108

    Article  Google Scholar 

  • Lorca S, Torres J, Serrano JL, Pérez J, Abad J, Santos F, Romero AJF (2022) Bifunctional P-containing RuO2 catalysts prepared from surplus Ru Co-ordination complexes and applied to Zn/Air batteries. Nanomaterials 13:115

    Google Scholar 

  • Lu Q, Zou X, Wang X, An L, Shao Z, Bu Y (2023) Simultaneous reactant accessibility and charge transfer engineering in Co-doped RuO2-supported OCNT for robust rechargeable zinc-air batteries. Appl Catal B 325:122323

    Article  Google Scholar 

  • Milikić J, Nastasić A, Martins M, Sequeira CA, Šljukić B (2023) Air cathodes and bifunctional oxygen electrocatalysts for aqueous metal-air batteries. Batteries 9:394

    Article  Google Scholar 

  • Park HS, Seo E, Yang J, Lee Y, Kim BS, Song HK (2017) Bifunctional hydrous RuO2 nanocluster electrocatalyst embedded in carbon matrix for efficient and durable operation of rechargeable zinc–air batteries. Sci Rep 7:7150

    Article  Google Scholar 

  • Rittiruam M, Somdee S, Buapin P, Aumnongpho N, Kerdprasit N, Saelee T, Kheawhom S, Chotigkrai N, Praserthdam S, Praserthdam P (2021) On the deactivation mechanisms of MnO2 electrocatalyst during operation in rechargeable zinc-air batteries studied via density functional theory. J Alloy Compd 869:159280

    Article  Google Scholar 

  • Shui Z, Liao X, Lei Y, Ni J, Liu Y, Dan Y, Zhao W, Chen X (2020) MnO2 synergized with N/S codoped graphene as a flexible cathode efficient electrocatalyst for advanced honeycomb-shaped stretchable aluminum–air batteries. Langmuir 36:12954–12962

    Article  Google Scholar 

  • Shui Z, Tian H, Yu S, Xiao H, Zhao W, Chen X (2023) La0.75Sr0.25MnO3-based perovskite oxides as efficient and durable bifunctional oxygen electrocatalysts in rechargeable Zn-air batteries. Sci China Mater 66:1002–1012

    Google Scholar 

  • Sun H, Hu Z, Yao C, Yu J, Du Z (2020) Silver doped amorphous MnO2 as electrocatalysts for oxygen reduction reaction in Al-Air battery. J Electrochem Soc 167:080539

    Article  Google Scholar 

  • Sun B, Munroe P, Wang G (2013) Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance. Sci Rep 3:2247

    Article  Google Scholar 

  • Sun S, Xue Y, Wang Q, Huang H, Miao H, Liu Z (2018) Cerium ion intercalated MnO2 nanospheres with high catalytic activity toward oxygen reduction reaction for aluminum-air batteries. Electrochim Acta 263:544–554

    Article  Google Scholar 

  • Wang B, Li G (2022) High performance bifunctional electrocatalysts designed based on transition‐metal sulfides for rechargeable Zn–Air batteries. Chemistry–A Eur J 28:e202202062

    Google Scholar 

  • Wang N, Ning S, Yu X, Chen D, Li Z, Xu J, Meng H, Zhao D, Li L, Liu Q, Lu B, Chen S (2022) Graphene composites with Ru-RuO2 heterostructures: highly efficient Mott–Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc–air batteries. Appl Catal B 302:120838

    Article  Google Scholar 

  • Wei Z, Zhang Z, Ren Y, Zhao H (2021) A novel Cr2O3/MnO2-x electrode for lithium-oxygen batteries with low charge voltage and high energy efficiency. Front Chem 9:646218

    Article  Google Scholar 

  • Wu H, Sun W, Shen J, Lu C, Wang Y, Wang Z, Sun K (2018) Improved structural design of single-and double-wall MnCo2O4 nanotube cathodes for long-life Li–O2 batteries. Nanoscale 10:13149–13158

    Article  Google Scholar 

  • Wu MC, Zhao TS, Jiang HR, Wei L, Zhang ZH (2016) Facile preparation of high-performance MnO2/KB air cathode for Zn-air batteries. Electrochim Acta 222:1438–1444

    Article  Google Scholar 

  • Xia Z, Zhu Y, Zhang W, Hu T, Chen T, Zhang J, Liu Y, Ma H, Fang H, Li L (2020) Cobalt ion intercalated MnO2/C as air cathode catalyst for rechargeable aluminum–air battery. J Alloy Compd 824:153950

    Article  Google Scholar 

  • Xie X, Zhang X, Tian W, Zhang X, Ding J, Liu Y, Lu S (2023) Tri-functional Ru-RuO2/Mn-MoO2 composite: a high efficient electrocatalyst for overall water splitting and rechargeable Zn–air batteries. Chem Eng J 143760

    Google Scholar 

  • Xu N, Liu Y, Zhang X, Li X, Li A, Qiao J, Zhang J (2016) Self-assembly formation of Bi-functional Co3O4/ MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery. Sci Rep 6:33590

    Article  Google Scholar 

  • Xu B, Lu H, Cai W, Cao Y, Deng Y, Yang W (2019) Synergistically enhanced oxygen reduction reaction composites of specific surface area and manganese valence controlled α- MnO2 nanotube decorated by silver nanoparticles in Al-air batteries. Electrochim Acta 305:360–369

    Article  Google Scholar 

  • Zhang X, Gong Y, Li S, Sun C (2017) Porous perovskite La0. 6Sr0. 4Co0. 8Mn0. 2O3 nanofibers loaded with RuO2 nanosheets as an efficient and durable bifunctional catalyst for rechargeable Li–O2 batteries. ACS Catal 7(11):7737–7747

    Google Scholar 

  • Zhao Y, Ding L, Wang X, Yang X, He J, Yang B, Wang B, Zhang D, Li Z (2021) Yolk-shell ZIF-8@ ZIF-67 derived Co3O4@ NiCo2O4 catalysts with effective electrochemical properties for Li-O2 batteries. J Alloy Compd 861:157945

    Google Scholar 

  • Zheng X, Zuria AM, Mohamedi M (2022) Hybrid carbon sphere Chain–MnO2 nanorods as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Inorg Chem 62:989–1000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpana Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrawal, A. (2024). Multi-atom Catalysts for Metal-Air Batteries. In: Kumar, A., Gupta, R.K. (eds) Atomically Precise Electrocatalysts for Electrochemical Energy Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-54622-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54622-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54621-1

  • Online ISBN: 978-3-031-54622-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics