Skip to main content

Atomically Precise Electrocatalysts: Single/Dual/Multi-atom Catalysts

  • Chapter
  • First Online:
Atomically Precise Electrocatalysts for Electrochemical Energy Applications

Abstract

A possible strategy is to create electrochemical methods of conversion that may utilize renewable energy to transform airborne molecules like water, nitrogen, and carbon dioxide into commodities with value added. Due to their ability to influence the rate, effectiveness, and specificity of chemical transformation responses, electrocatalysts serve a vital part in these processes. The generation of energy that is environmentally friendly relies heavily on electrochemical energy transformations. Nevertheless, the outcome falls short of expectations since there are no highly effective and reliable electrocatalysts. Because of their high operation, stability, and potential to maximize utilization effectiveness, single, dual, and multi-atom catalysts have recently become hot study subjects in the field of electrocatalysis. The synthesis, characterization, and computer modeling of nanoscale materials have seen ongoing advancements. Hence the present book chapter discusses the important electrocatalytic applications of atomically precise Single/Dual/Multi-atom catalysts toward electrochemical energy applications. We expect that this chapter can offer perspectives for logical planning and effective formulation of improved electrocatalysts with atomic precision by examining structure–activity/stability correlations and electrochemical processes of diverse atomically precise electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chengcheng Q, Yuhua L, Yongping D (2023) Synergistic effects of Fe–Se dual single-atom sites for boosting electrochemical nonenzymatic H2O2 sensing. Appl Surf Sci 637:157900

    Article  Google Scholar 

  • Cui T, Wang YP, Ye T, Wu J, Chen Z, Li J, Lei Y, Wang D, Li Y (2022) Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew Chem Int Ed Engl 61:e202115219

    Article  Google Scholar 

  • Dewei Z, Oleg VP, Lai X (2023) Design of a four-atom cluster embedded in carbon nitride for electrocatalytic generation of multi-carbon products. J Am Chem Soc 145:7030–7039

    Article  Google Scholar 

  • Du L, Prabhakaran V, Xie X, Park S, Wang Y, Shao Y (2021) Low-PGM and PGM-free catalysts for proton exchange membrane fuel cells: stability challenges and material solutions. Adv Mater 33:1908232

    Article  Google Scholar 

  • Guodong S, Yanan C, Deqing L, Mingzhen H, Xinhu L, Zhe W, Zengjian C, Fengyi S, Bozhen C, Kebin Z (2023) Dual-atom Cu2/N-doped carbon catalyst for electroreduction of CO2 to C2H4. Appl Catal a: General 651:119025

    Article  Google Scholar 

  • Hao L, Wenfu X, Baotao K, Jin YL (2023) Understanding the synergistic effects of dual-atom catalysts NiSn on carbon dioxide reduction. Appl Surf Sci 638:158109

    Article  Google Scholar 

  • He Z, Kuang H, Alex WR, Angus IK, Dongwook K, Jisoon I, Euijoon Y, Gun-Do L, Jamie HW (2014) Atomic structure and dynamics of metal dopant pairs in graphene. Nano Lett 14:3766–3772

    Article  Google Scholar 

  • Hoki S, Ji-Hwan L, Periyayya U, Vandung D, Aloysius S, Yeji L, In-Hwan L (2023) Platinum single-atom catalysts anchored on a heterostructure cupric oxide/copper foam for accelerating photoelectrochemical hydrogen evolution reaction. Nano Energy 117:108904

    Article  Google Scholar 

  • Hongwei Z, Xindie J, Jong-Min L, Xin W (2022) Tailoring of active sites from single to dual atom sites for highly efficient electrocatalysis. ACS Nano 16:17572–17592

    Article  Google Scholar 

  • Huang J, Sementa L, Liu Z, Barcaro G, Feng M, Liu E, Jiao L, Xu M, Leshchev D, Lee SJ, Mufan L, Chengzhang W, Enbo Z, Yang L, Bosi P, Xiangfeng D, William A. Goddard III, Alessandro F, Qingying J, Yu H (2022) Experimental Sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts. Nat Catal 5:513–523

    Google Scholar 

  • Jia L, Qiuyun Z, Mufei Y, Siguo C, Jianghai D, Xinyu P, Yan L, Jing L, Qiang L, Minhua S, Zidong W (2021) Cross-linked multi-atom Pt catalyst for highly efficient oxygen reduction catalysis. Appl Catal B 284:119728

    Article  Google Scholar 

  • Jiang K, Zhao J, Wang H (2020) Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide. Adv Funct Mater 30:2003321

    Article  Google Scholar 

  • Jiawen G, Huimin L, Dezheng L, Jian W, Xavier D, Dehua H, Qijian Z (2022) A mini review on the synthesis of single atom catalysts. RSC Adv 12:9373–9394

    Article  Google Scholar 

  • Jiazhan L, Chang C, Lekai X, Yu Z, Wei W, Erbo Z, Yue W, Chen C (2023) Challenges and perspectives of single-atom-based catalysts for electrochemical reactions. JACS Au 3(3):736–755

    Article  Google Scholar 

  • Juan M, Jingmin W, Zhen L, Xiaoying F, Ning Z, Xinquan Z, Hang X, Xuefeng W, Shuge P (2023) Single-atom Pd loaded on nitrogen-doped carbon as a bifunctional catalyst for the electrochemical degradation of 2,4-dichlorophenol. J Environ Chem Eng 11:111007

    Article  Google Scholar 

  • Junhong F, Jinhu D, Rui S, Keju S, Junying Z, Mingrun L, Nana Y, Bingsen Z, Mark GH, Qiang F, Jiahui H (2021) ACS Catal 11:1952–1961

    Google Scholar 

  • Kulkarni A, Siahrostami S, Patel A, Nørskov JK (2018) Understanding catalytic activity trends in the oxygen reduction reaction. Chem Rev 118:2302–2312

    Article  Google Scholar 

  • Lei Y, Shenghua F, Weihua Z (2023) Achieving reaction pathway separation for electrochemical nitrate fixation on triatomic catalysts: a new mechanism. J Hazard Mater 441:129972

    Article  Google Scholar 

  • Li R, Wang D (2022) Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts. Adv Energy Mater 12:2103564

    Article  Google Scholar 

  • Li Y, Panpan L, Qingyi Z, Anuj K, Kai S, Shubo T, Xiaoming S (2023) Atomically precise electrocatalysts for oxygen reduction reaction. Chem 9:280–342

    Article  Google Scholar 

  • Libo S, Vikas R, Xin W (2022) Multi-atom cluster catalysts for efficient electrocatalysis. Chem Soc Rev 51:8923–8956

    Article  Google Scholar 

  • Ling-Chan T, Jin-Nian H, Yang M, Jin-Xia L, Chun Z, Jun L (2023) Ultrastable nickel single-atom catalysts with high activity and selectivity for electrocatalytic CO2 methanation. Nano Res 16:8987–8995

    Article  Google Scholar 

  • Liu J, Wan X, Liu S, Liu X, Zheng L, Yu R, Shui J (2021) Hydrogen passivation of M–N–C (M = Fe, Co) catalysts for storage stability and ORR activity improvements. Adv Mater 33:2103600

    Article  Google Scholar 

  • Meng FC, Peng M, Chen Y, Cai X, Huang F, Yang L, Liu X, Li T, Wen X, Wang N, Dequan X, Hong J, Lixin X, Hongyang L, Ding M (2022) Defect-rich graphene stabilized atomically dispersed Cu3 clusters with enhanced oxidase-like activity for antibacterial applications. Appl Catal B 301:120826

    Google Scholar 

  • Mengmeng F, Jiewu C, Jingjie W, Robert V, Dongping S, Pulickel MA (2020) Improving the catalytic activity of carbon-supported single atom catalysts by polynary metal or heteroatom doping. Small 16:1906782

    Article  Google Scholar 

  • Nishant B, Plaban JS, Satyajit DB, Nand Kishor G, Ramesh CD (2020) Catalytic oxidation of NO on [Au–M]−(M = Pd and Pt) bimetallic dimers: an insight from density functional theory approach. J Phys Chem C 124:3059–3068

    Article  Google Scholar 

  • Priyanka A, Debasish S, Kamlendra A, Prashanth WM (2022) Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: current developments and future challenges. Coord Chem Rev 452:214289

    Article  Google Scholar 

  • Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634–641

    Google Scholar 

  • Qingchun Z, Di L, Yaping Z, Zhiliang G, Minpeng C, Yuyun C, Bo J, Yingze S, Hui P (2023) Insight into coupled Ni–Co dual-metal atom catalysts for efficient synergistic electrochemical CO2 reduction. J Energy Chem 87:509–517

    Article  Google Scholar 

  • Wang Y, Chu F, Zeng J, Wang Q, Naren T, Li Y, Cheng Y, Lei Y, Wu F (2021) Single atom catalysts for fuel cells and rechargeable batteries: principles, advances, and opportunities. ACS Nano 15:210–239

    Article  Google Scholar 

  • Wang Y, Wan X, Liu J, Li W, Li Y, Guo X, Liu X, Shang J, Shui J (2022) Catalysis stability enhancement of Fe/Co dual-atom site via phosphorus coordination for proton exchange membrane fuel cell. Nano Res 15:3082–3089

    Article  Google Scholar 

  • Wang J, Gan L, Zhang W, Peng Y, Yu H, Yan Q, Xia X, Wang X (2018) In situ formation of molecular Ni–Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. Sci Adv 4:eaap7970

    Google Scholar 

  • Weijie Y, Zhenhe J, Binghui Z, Li W, Zhengyang G, Hao L (2023) Surface states of dual-atom catalysts should be considered for analysis of electrocatalytic activity. Commun Chem 6. https://doi.org/10.1038/s42004-022-00810-4

  • Weiyu Z, Yuguang C, Wenshu Z, Jinhui Z, Fan L, Kai W, Fangxu L, Heng L, Jing L, Meiping T, Erkang W, Shaojun G (2021) Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv Mater 33:2102576

    Article  Google Scholar 

  • Xia W, Mahmood A, Liang Z, Zou R, Guo S (2016) Earth-abundant nanomaterials for oxygen reduction. Angew Chem Int Ed Engl 55:2650–2676

    Article  Google Scholar 

  • Xiang-Ming L, Hong-Juan W, Chao Z, Di-Chang Z, Tong-Bu L (2023) Controlled synthesis of a Ni2 dual-atom catalyst for synergistic CO2 electroreduction. Appl Catal B 322:122073

    Article  Google Scholar 

  • Yang C, Jian L, Qin P, Xu L, Tianyi M, Xiaodong W (2023) Inter-metal interaction of dual-atom catalysts in heterogeneous catalysis. Angew Chem Int Ed 62:e202306469

    Article  Google Scholar 

  • Yuan S, Zhang J, Hu L, Li J, Li S, Gao Y, Zhang Q, Gu L, Yang W, Feng X. Wang B (2021) Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew Chem Int Ed Engl 60:21685–21690

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naghma Shaishta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mane, S.K.B., Shaishta, N. (2024). Atomically Precise Electrocatalysts: Single/Dual/Multi-atom Catalysts. In: Kumar, A., Gupta, R.K. (eds) Atomically Precise Electrocatalysts for Electrochemical Energy Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-54622-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54622-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54621-1

  • Online ISBN: 978-3-031-54622-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics