Skip to main content

Metal–Organic Frameworks (MOFs) Derived Electrode Electrocatalyst for Lithium-Ion Batteries

  • Chapter
  • First Online:
Atomically Precise Electrocatalysts for Electrochemical Energy Applications

Abstract

The optimized solution to growing problems interconnected with rising energy demands and the environment is the development of renewable energy-storage devices. Among the multiple energy storage devices, the most demanding option is the batteries due to their huge energy density and specific capacity, abundant raw materials, remarkable cycling efficiency, paramount energy efficacy, wide temperature range, and smooth performance during the charge–discharge process. The development of appropriately designed electrode materials to meet the required threshold is an area of future concern for the researchers. Metal–organic frameworks (MOFs) display excellent electrochemical responses due to their tunable porosity, flexibility, conductivity, easy functionalization, and huge specific surface area. These silent features makes them a captivating electrode material with exceptional electrochemical behavior for the presently dominated lithium-ion batteries. Henceforth, this review recaps the recent advancements in MOFs-based electrode materials for high-performance Li-ion batteries. This review concisely describe the evolution of batteries, the basic principle and mechanism of Li-ion batteries, and explicate the recent advances in MOFs, MOF-derived materials, and MOFs composites as an electrode material for Li-ion batteries along with their electrochemical response.  Furthermore, the future prospects of MOFs-based materials for Li-ion batteries are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76

    Article  Google Scholar 

  • Bulusheva L, Okoturb AV, Kurenya AG, Zhang H, Chen X, Song H (2011) Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 49(12):4013–4023

    Article  Google Scholar 

  • Carignano MG, Costa-Castelló R, Roda V, Nigro NM, Junco S, Feroldi D (2017) Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand. J Power Sources 360:419–433

    Article  Google Scholar 

  • Chang Y-C, Huang C-H, Liu W-R (2022) Co/ZnO/nitrogen-doped carbon composite anode derived from metal organic frameworks for lithium ion batteries. Polymers 14(15):3085

    Article  Google Scholar 

  • Chen W, Lei T, Wu C, Deng M, Gong C, Hu K, Ma Y, Dai L (2018) Designing safe electrolyte systems for a high-stability lithium–sulfur battery. Adv Energy Mater 8(10):1702348

    Article  Google Scholar 

  • Fan J, Li G, Li B, Zhang D, Chen D, Li L (2019) Reconstructing the surface structure of Li-rich cathodes for high-energy lithium-ion batteries. ACS Appl Mater Interfaces 11(22):19950–19958

    Article  Google Scholar 

  • Gangadharan R, Namboodiri P, Prasad K, Viswanathan R (1979) The lithium—thionyl chloride battery-a review. J Power Sources 4(1):1–9

    Article  Google Scholar 

  • Gou L, Liu PG, Lei HY, Chen GQ, Li ZY, Fan XY, Li DL, Song LF (2017) Isostructural metal organic frameworks based on 1, 4-naphthalene dicarboxylate as anodes for lithium ion battery. Mater Technol 32(10):630–637

    Article  Google Scholar 

  • Guan R, Dong G, Li Z, Yang S (2022) MOF-derived Co3O4/C microspheres as high-performance anode materials for Lithium-Ion batteries. Russ J Phys Chem A 96(Suppl 1):S175–S182

    Article  Google Scholar 

  • Han X, Chen W-M, Han X, Tan Y-Z, Sun D (2016) Nitrogen-rich MOF derived porous Co 3 O 4/N–C composites with superior performance in lithium-ion batteries. J Mater Chem A 4(34):13040–13045

    Article  Google Scholar 

  • Han X, Sun L, Wang F, Sun D (2018) MOF-derived honeycomb-like N-doped carbon structures assembled from mesoporous nanosheets with superior performance in lithium-ion batteries. J Mater Chem A 6(39):18891–18897

    Article  Google Scholar 

  • He S, Li Z, Ma L, Wang J, Yang S (2017) Graphene oxide-templated growth of MOFs with enhanced lithium-storage properties. New J Chem 41(23):14209–14216

    Article  Google Scholar 

  • He Z, Wang K, Zhu S, Huang L, Chen M, Guo J, Pei S, Shao H, Wang J (2018) MOF-derived hierarchical MnO-doped Fe3O4@ C composite nanospheres with enhanced lithium storage. ACS Appl Mater Interfaces 10(13):10974–10985

    Article  Google Scholar 

  • Huang Y, Yang H, Xiong T, Adekoya D, Qiu W, Wang Z, Zhang S (2020) Adsorption energy engineering of nickel oxide hybrid nanosheets for high areal capacity flexible lithium-ion batteries. Energy Storage Mater 25:41–51

    Google Scholar 

  • Huang G, Zhang F, Zhang L, Du X, Wang J, Wang L (2014) Hierarchical NiFe 2 O 4/Fe 2 O 3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A 2(21):8048–8053

    Google Scholar 

  • Jiang Q, Xiong P, Liu J, Xie Z, Wang Q, Yang XQ, Cao Y, Sun J, Xu Y, Chen L (2020) A redox-active 2D metal–organic framework for efficient lithium storage with extraordinary high capacity. Angew Chem Int Ed 59(13):5273–5277

    Google Scholar 

  • Jiang Y, Zhao H, Yue L, Liang J, Li T, Liu Q, Luo Y, Kong X (2021) Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochem Commun 122:106881

    Google Scholar 

  • Jin Y, Zhao C, Sun Z, Lin Y, Chen L, Wang D, Shen C (2016) Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries. RSC Adv 6(36):30763–30768

    Google Scholar 

  • Jin J, Zheng Y, Huang S, Sun P, Srikanth N, Kong LB, Yan Q, Zhou K (2019) Directly anchoring 2D NiCo metal–organic frameworks on few-layer black phosphorus for advanced lithium-ion batteries. J Mater Chem A 7(2):783–790

    Google Scholar 

  • Li X, Cheng F, Zhang S, Chen J (2006) Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O (1, 3, 5-benzenetribenzoate) 2. J Power Sources 160(1):542–547

    Google Scholar 

  • Li G, Quayang T, Xiaong T, Jiang Z, Adekoya D, Wu Y, Huang Y (2021) All-carbon-frameworks enabled thick electrode with exceptional high-areal-capacity for Li-Ion storage. Carbon 174:1–9

    Google Scholar 

  • Li Y, Xia Y, Liu K, Ye K, Wang Q, Zhang S, Huang Y, Liu H (2020) Constructing Fe-MOF-derived Z-scheme photocatalysts with enhanced charge transport: nanointerface and carbon sheath synergistic effect. ACS Appl Mater Interfaces 12(22):25494–25502

    Google Scholar 

  • Li J, Yan D, Hou S, Lu T, Yao Y, Chua DHC, Pan L (2018) Metal-organic frameworks derived yolk-shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries. Chem Eng J 335:579–589

    Google Scholar 

  • Li Z, Yin L (2015) Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4–ZnO–C on nickel foam as anodes for high performance lithium ion batteries. J Mater Chem A 3:21569–21577

    Google Scholar 

  • Liang Z, Qu C, Guo W, Zou R, Xu Q (2018) Pristine metal–organic frameworks and their composites for energy storage and conversion. Adv Mater 30(37):1702891

    Google Scholar 

  • Liao Y, Li C, Lou X, Wang P, Yang Q, Shen M, Hu B (2017) Highly reversible lithium storage in cobalt 2, 5-dioxido-1, 4-benzenedicarboxylate metal-organic frameworks boosted by pseudocapacitance. J Colloid Interface Sci 506:365–372

    Google Scholar 

  • Litao Y, Liu J, Xu X, Zhang L, Hu R, Liu J, Yang L, Zhu M (2017) Metal–organic framework-derived NiSb alloy embedded in carbon hollow spheres as superior lithium-ion battery anodes. ACS Appl Matter 9:2516–2525

    Google Scholar 

  • Liu Y, Gu J, Zhang J, Yu F, Dong L, Nie N, Li W (2016a) Metal organic frameworks derived porous lithium iron phosphate with continuous nitrogen-doped carbon networks for lithium ion batteries. J Power Sources 304:42–50

    Google Scholar 

  • Liu J, Song X, Zhang T, Liu S, Wen H, Chen L (2021) 2D conductive metal–organic frameworks: an emerging platform for electrochemical energy storage. Angew Chem 133(11):5672–5684

    Google Scholar 

  • Liu C, Tian R, Sun D, Liu H, Duan H (2020) MOF-derived 3D hollow porous carbon/graphene composites for advanced lithium-ion battery anodes. J Solid State Chem 290:121568

    Google Scholar 

  • Liu J, Wu C, Xiao D, Kopold P, Gu L, Maier J, Yu Y (2016b) MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage. Small 12(17):2354–2364

    Google Scholar 

  • Liu Q, Yu L, Wang Y, Ji Y, Horvat J, Chang ML, Jia X, Wang G (2013) Manganese-based layered coordination polymer: synthesis, structural characterization, magnetic property, and electrochemical performance in lithium-ion batteries. Inorg Chem 52(6):2817–2822

    Google Scholar 

  • Liu B, Zhang X, Shioyama H, Mukai T, Sakai T, Xu Q (2010) Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery. J Power Sources 195(3):857–861

    Google Scholar 

  • Liu X, Zhang S, Xing Y, Wang S, Yang P, Li H (2016c) MOF-derived, N-doped porous carbon coated graphene sheets as high-performance anodes for lithium-ion batteries. New J Chem 40(11):9679–9683

    Google Scholar 

  • Ma J, Wang H, Yang X, Chai Y, Yuan R (2015) Porous carbon-coated CuCo 2 O 4 concave polyhedrons derived from metal–organic frameworks as anodes for lithium-ion batteries. J Mater Chem A 3(22):12038–12043

    Google Scholar 

  • Maiti S, Pramanik A, Manju U, Mahanty S (2016) Cu3 (1, 3, 5-benzenetricarboxylate) 2 metal-organic framework: a promising anode material for lithium-ion battery. Microporous Mesoporous Mater 226:353–359

    Google Scholar 

  • Mehek R, Iqbal N, Noor T, Amjad M, Ali G, Kannan MA (2021) Metal–organic framework based electrode materials for lithium-ion batteries: a review. RSC Adv 11(47):29247–29266

    Google Scholar 

  • Mutahir S, Wang C, Song J, Wang L, Lei W, Jiao X, Kahn MA, Zhou B, Zhong Q, Hao Q (2020) Pristine Co (BDC) TED0. 5 a pillared-layer biligand cobalt based metal organic framework as improved anode material for lithium-ion batteries. Appl Mater Today 21:100813

    Google Scholar 

  • Nazir A, Le HT, Nguyen A-G, Park C-J (2021) Graphene analogue metal organic framework with superior capacity and rate capability as an anode for lithium ion batteries. Electrochim Acta 389:138750

    Google Scholar 

  • Peng H-J, Hao G-X, Chu Z-H, Cui Y-L, Lin X-M, Cai Y-P (2017) From metal–organic framework to porous carbon polyhedron: toward highly reversible lithium storage. Inorg Chem 56(16):10007–10012

    Google Scholar 

  • Peng Z, Yi X, Liu Z, Shang J, Wang D (2016) Triphenylamine-based metal–organic frameworks as cathode materials in lithium-ion batteries with coexistence of redox active sites, high working voltage, and high rate stability. ACS Appl Mater Interfaces 8(23):14578–14585

    Google Scholar 

  • Ramaraju B, Li CH, Prakash S, Chen CC (2016) Metal–organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications. Chem Commun 52(5):946–949

    Google Scholar 

  • Reddy RCK, Lin J, Chen Y, Zheng C, Lin X, Cai Y, Su CY (2020) Progress of nanostructured metal oxides derived from metal–organic frameworks as anode materials for lithium–ion batteries. Coord Chem Rev 420:213434

    Article  Google Scholar 

  • Rizvi SAM, Iqbal N, Haider MD, Noor T, Anwar R, Hanif S (2020) Synthesis and characterization of Cu-MOF derived Cu@ AC electrocatalyst for oxygen reduction reaction in PEMFC. Catal Lett 150:1397–1407

    Article  Google Scholar 

  • Shah R, Ali S, Xia P, Raziq F, Mabood F, Shah S, Zada A, Hayat A, Wu X, Xiao H, Zu X, Li S, Qiao L (2023) Amino functionalized metal-organic framework/rGO composite electrode for flexible Li-ion batteries. J Alloy Compd 936:168183

    Article  Google Scholar 

  • Shen X, Liu H, Cheng XB, Yan C, Huang JQ (2018) Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes. Energy Storage Mater 12:161–175

    Google Scholar 

  • Shen L, Song H, Wang C (2017) Metal-organic frameworks triggered high-efficiency Li storage in Fe-based polyhedral nanorods for lithium-ion batteries. Electrochim Acta 235:595–603

    Google Scholar 

  • Shi C, Wang X, Gao Y, Rong H, Song Y, Liu HJ, Liu Q (2017) Nickel metal-organic framework nanoparticles as electrode materials for Li-ion batteries and supercapacitors. J Solid State Electrochem 21:2415–2423

    Google Scholar 

  • Song Z, Hou J, Hofmann H, Li J, Ouyang M (2017) Sliding-mode and Lyapunov function-based control for battery/supercapacitor hybrid energy storage system used in electric vehicles. Energy 122:601–612

    Google Scholar 

  • Sun X, Gao G, Yan D, Feng C (2017) Synthesis and electrochemical properties of Fe3O4@ MOF core-shell microspheres as an anode for lithium ion battery application. Appl Surf Sci 405:52–59

    Google Scholar 

  • Sun W, Tang X, Wang Y (2020) Multi-metal–organic frameworks and their derived materials for Li/Na-ion batteries. Electrochem Energy Rev 3:127–154

    Article  Google Scholar 

  • Tai Z, Shi M, Chong S, Chen Y, Shu C, Dai X (2019) N-doped ZIF-8-derived carbon (NC-ZIF) as an anodic material for lithium-ion batteries. J Alloy Compd 800:1–7

    Article  Google Scholar 

  • Talin AA, Centrone A, Foster ACME, Stavila V, Hanery P, Kinney RA, Szalai V, Gabaly F (2014) Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343(6166):66–69

    Google Scholar 

  • Wang K, Chen J, Hou F, Wang H, Zhang Y, Liu H, Liang J, Wang H (2023) In situ growth-optimized synthesize of Al-MOF@ RGO anode materials with long-life capacity-enhanced lithium-ion storage. Chem Eng J 455:140561

    Google Scholar 

  • Wang Y, Gao Y, Shao J, Holze R, Chen Z, Yun Y, Qu Q, Zheng H (2018) Ultrasmall Fe 3 O 4 nanodots within N-doped carbon frameworks from MOFs uniformly anchored on carbon nanowebs for boosting Li-ion storage. J Mater Chem A 6(8):3659–3666

    Google Scholar 

  • Wang Y, Yu Y, Liu LZ, Yan T, Zeng G, Li L, Duan J (2021) Bimetallic MOF-derived CoSe2 embedded within N-doped carbon with enhanced lithium storage properties. Solid State Ionics 370:115747

    Google Scholar 

  • Wu R, Qian X, Zhou K, Wei J, Lou J, Ajayan PM (2014) Porous spinel Zn x Co3–x O4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8(6):6297–6303

    Google Scholar 

  • Wu Y, Yan D, Zhang Z, Matsushita MM, Awaga K (2019) Electron highways into nanochannels of covalent organic frameworks for high electrical conductivity and energy storage. ACS Appl Mater Interfaces 11(8):7661–7665

    Article  Google Scholar 

  • Xia G, Su J, Li M, Jiang P, Yang Y, Chen Q (2017) A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity. J Mater Chem A 5(21):10321–10327

    Article  Google Scholar 

  • Xie J, Zhang Q (2016) Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. J Mater Chem A 4(19):7091–7106

    Article  Google Scholar 

  • Xiong T, Su H, Yang F, Tan Q, Appadurai PBS, Afuwapa AA, Guo K, Huang Y, Wang Z (2020) Harmonizing self-supportive VN/MoS2 pseudocapacitance core-shell electrodes for boosting the areal capacity of lithium storage. Mater Today Energy 17:100461

    Article  Google Scholar 

  • Xu X, Cao R, Jeong S, Cho J (2012) Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett 12(9):4988–4991

    Article  Google Scholar 

  • Xu G, Nie P, Dou H, Ding B, Li L, Zhang X (2017) Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater Today 20(4):191–209

    Article  Google Scholar 

  • Xu Y, Qiu Y, Zhang C, Gan C, Huang L, Tang X, Luo X (2020) Yolk-Shell structured C/Mn3O4 microspheres derived from metal-organic frameworks with enhanced lithium storage performance. Energ Technol 8(9):2000376

    Article  Google Scholar 

  • Yamada T, Shiraishi K, Kitagawa H, Kimizuka N (2017) Applicability of MIL-101 (Fe) as a cathode of lithium ion batteries. Chem Commun 53(58):8215–8218

    Article  Google Scholar 

  • Yilmaz G, Peh SB, Zhao D, Ho GW (2019) Atomic-and molecular-level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications. Adv Sci 6(21):1901129

    Article  Google Scholar 

  • Yu P, Zhao X, Li Y, Zhang Q (2017) Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors. Appl Surf Sci 393:37–45

    Article  Google Scholar 

  • Yue H, Shi Z, Wang Q, Ding Y, Zhang J, Huo N, Yang S (2015) In situ preparation of cobalt doped ZnO@ C/CNT composites by the pyrolysis of a cobalt doped MOF for high performance lithium ion batteries. RSC Adv 5(92):75653–75658

    Article  Google Scholar 

  • Zhang C, Hu W, Jiang H, Chang JK, Zheng M, Wu QH, Dong Q (2017b) Electrochemical performance of MIL-53 (Fe)@ RGO as an organic anode material for Li-ion batteries. Electrochim Acta 246:528–535

    Article  Google Scholar 

  • Zhang Y, Niu YB, Liu T, Li YT, Wang MQ, Hou J, Xu M (2015) A nickel-based metal-organic framework: a novel optimized anode material for Li-ion batteries. Mater Lett 161:712–715

    Google Scholar 

  • Zhang Y, Riduan SN, Wang J (2017) Redox active metal–and covalent organic frameworks for energy storage: balancing porosity and electrical conductivity. Chemistry–A Eur J 23(65):16419–16431

    Google Scholar 

  • Zhang L, Rolling L, Wang X, Vara M, Chi M, Liu J, Choi S, Park L (2015) Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349(6246):412–416

    Google Scholar 

  • Zheng D, Zhang X, Wang J, Qu D, Yang X, Qu D (2016) Reduction mechanism of sulfur in lithium–sulfur battery: from elemental sulfur to polysulfide. J Power Sources 301:312–316

    Google Scholar 

  • Zou F, Chen YM, Liu K, Yu Z, Liang W, Bhaway SM, Gao M, Zhu Y (2016) Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 10(1):377–386

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National University of Sciences and Technology (NUST), Islamabad, Pakistan. T. Noor and N. Iqbal would also like to acknowledge Higher Education Commission of Pakistan under HEC CPEC CRG Project 149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayyaba Noor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yaqoob, L., Noor, T., Iqbal, N. (2024). Metal–Organic Frameworks (MOFs) Derived Electrode Electrocatalyst for Lithium-Ion Batteries. In: Kumar, A., Gupta, R.K. (eds) Atomically Precise Electrocatalysts for Electrochemical Energy Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-54622-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54622-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54621-1

  • Online ISBN: 978-3-031-54622-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics