Skip to main content

Abstract

In the electrochemical process, the oxygen evolution reaction (OER) plays a crucial role by providing protons and electrons for cathodic reactions such as the hydrogen evolution reaction (HER) or carbon dioxide reduction reaction (CO2RR). Since OER is the bottleneck of the electrochemical processes, it requires an active and durable catalyst that can generate high OER current density at minimum overpotential. In this context, single-atom catalysts (SACs) hold great promise for achieving significant catalytic mass activity by precisely utilizing metal active sites at the atomic level. However, SACs face a challenge where smaller particles tend to aggregate into clusters or larger particles due to their high surface energy. Consequently, it becomes imperative to gain a comprehensive understanding of the role of support materials, their interactions with SACs, and the behavior of SACs under OER conditions. This book chapter is dedicated to an exploration of recent advancements in the application of SACs for the OER. It encompasses a thorough examination of the structural characterization of SACs and delves into the utilization of in situ/operando spectroscopic techniques and computational research to uncover the underlying mechanisms responsible for their catalytic activity. Furthermore, the chapter provides a comprehensive summary of the OER catalytic activity and the stability of SACs, offering valuable insights into the current state of SAC technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal P, Sarkar D, Awasthi K, Menezes PW (2022) Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: current developments and future challenges. Coord Chem Rev 452:214289

    Article  Google Scholar 

  • Aristov DN (1997) Indirect RKKY interaction in any dimensionality. Phys Rev B 55:8064–8066

    Article  Google Scholar 

  • Barlocco I, Cipriano LA, Di Liberto G, Pacchioni G (2023) Does the oxygen evolution reaction follow the classical OH*, O*, OOH* path on single atom catalysts? J Catal 417:351–359

    Article  Google Scholar 

  • Beltrán-Suito R, Forstner V, Hausmann JN, Mebs S, Schmidt J, Zaharieva I, Laun K, Zebger I, Dau H, Menezes PW, Driess M (2020) A soft molecular 2Fe–2As precursor approach to the synthesis of nanostructured FeAs for efficient electrocatalytic water oxidation. Chem Sci 11:11834–11842

    Article  Google Scholar 

  • Cao L, Luo Q, Chen J, Wang L, Lin Y, Wang H, Liu X, Shen X, Zhang W, Liu W, Qi Z, Jiang Z, Yang J, Yao T (2019) Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat Commun 10:4849

    Article  Google Scholar 

  • Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H (2022) Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 51:4583–4762

    Article  Google Scholar 

  • Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y (2018) Single-Atom catalysts: synthetic strategies and electrochemical applications. Joule 2:1242–1264

    Article  Google Scholar 

  • Cipriano LA, Di Liberto G, Pacchioni G (2022) Superoxo and peroxo complexes on single-atom catalysts: impact on the oxygen evolution reaction. ACS Catal 12:11682–11691

    Article  Google Scholar 

  • De Kumar S, Won D-I, Kim J, Kim DH (2023a) Integrated CO2 capture and electrochemical upgradation: the underpinning mechanism and techno-chemical analysis. Chem Soc Rev 52:5744–5802

    Article  Google Scholar 

  • Dong C, Zhang X, Xu J, Si R, Sheng J, Luo J, Zhang S, Dong W, Li G, Wang W, Huang F (2020) Ruthenium-Doped Cobalt-Chromium layered double hydroxides for enhancing oxygen evolution through regulating charge transfer. Small 16:e201905328

    Article  Google Scholar 

  • Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland AI, Duan X, Huang Y (2018) General synthesis and definitive structural identification of MN4C4 Single-Atom catalysts with tunable electrocatalytic activities. Nat Catal 1:63–72

    Article  Google Scholar 

  • Garrido-Barros P, Gimbert-Suriñach C, Matheu R, Sala X, Llobet A (2017) How to make an efficient and robust molecular catalyst for water oxidation. Chem Soc Rev 46:6088–6098

    Article  Google Scholar 

  • Hausmann JN, Mebs S, Laun K, Zebger I, Dau H, Menezes PW, Driess M (2020) Understanding the formation of bulk- and surface-active layered (Oxy) hydroxides for water oxidation starting from a cobalt selenite precursor. Energy Environ Sci 13:3607–3619

    Article  Google Scholar 

  • Hausmann JN, Traynor B, Myers RJ, Driess M, Menezes PW (2021a) The PH of aqueous NaOH/KOH solutions: a critical and non-trivial parameter for electrocatalysis. ACS Energy Lett 6:3567–3571

    Article  Google Scholar 

  • Hausmann JN, Beltrán-Suito R, Mebs S, Hlukhyy V, Fässler TF, Dau H, Driess M, Menezes PW (2021b) Evolving highly active oxidic Iron(III) phase from corrosion of intermetallic iron silicide to master efficient electrocatalytic water oxidation and selective oxygenation of 5-Hydroxymethylfurfural. Adv Mater 33:2008823

    Article  Google Scholar 

  • Hessels J, Detz RJ, Koper MTM, Reek JNH (2017) Rational design rules for molecular water oxidation catalysts based on scaling relationships. Chem—A Eur J 23:16413–16418

    Google Scholar 

  • Hu Y, Luo G, Wang L, Liu X, Qu Y, Zhou Y, Zhou F, Li Z, Li Y, Yao T, Xiong C, Yang B, Yu Z, Wu Y (2021) Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv Energy Mater 11:e202002816

    Article  Google Scholar 

  • Hu H, Wang J, Tao P, Song C, Shang W, Deng T, Wu J (2022) Stability of single-atom catalysts for electrocatalysis. J Mater Chem A 10:5835–5849

    Article  Google Scholar 

  • Huang Z-F, Song J, Dou S, Li X, Wang J, Wang X (2019) Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter 1:1494–1518

    Article  Google Scholar 

  • Jiang K, Luo M, Peng M, Yu Y, Lu Y-R, Chan T-S, Liu P, de Groot FMF, Tan Y (2020) Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation. Nat Commun 11:2701

    Article  Google Scholar 

  • Jose V, Hu H, Edison E, Manalastas W, Ren H, Kidkhunthod P, Sreejith S, Jayakumar A, Nsanzimana JMV, Srinivasan M, Choi J, Lee J (2021) Modulation of single atomic Co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn–Air batteries. Small Methods 5:e202000751

    Article  Google Scholar 

  • Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J (2020) Single-Atom catalysts across the periodic table. Chem Rev 120:11703–11809

    Article  Google Scholar 

  • Kramm UI, Herrmann-Geppert I, Behrends J, Lips K, Fiechter S, Bogdanoff P (2016) On an easy way to prepare Metal-Nitrogen doped carbon with exclusive presence of MeN 4-Type sites active for the ORR. J Am Chem Soc 138:635–640

    Article  Google Scholar 

  • Kumar P, Kannimuthu K, Zeraati AS, Roy S, Wang X, Wang X, Samanta S, Miller KA, Molina M, Trivedi D, Abed J, Campos Mata MA, Al-Mahayni H, Baltrusaitis J, Shimizu G, Wu YA, Seifitokaldani A, Sargent EH, Ajayan PM, Hu J, Kibria MG (2023b) High-Density cobalt single-atom catalysts for enhanced oxygen evolution reaction. J Am Chem Soc 145:8052–8063

    Article  Google Scholar 

  • Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y (2016) Single-Atom Pt as Co-Catalyst for enhanced photocatalytic H2 evolution. Adv Mater 28:2427–2431

    Article  Google Scholar 

  • Li P, Wang M, Duan X, Zheng L, Cheng X, Zhang Y, Kuang Y, Li Y, Ma Q, Feng Z, Liu W, Sun X (2019) Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with Cobalt-Iron layered double hydroxides. Nat Commun 10:1711

    Article  Google Scholar 

  • Li J, Jiang Y, Wang Q, Xu C-Q, Wu D, Banis MN, Adair KR, Doyle-Davis K, Meira DM, Finfrock YZ, Li W, Zhang L, Sham T-K, Li R, Chen N, Gu M, Li J, Sun X (2021) A general strategy for preparing Pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms. Nat Commun 12:6806

    Article  Google Scholar 

  • Lin C, Li J-L, Li X, Yang S, Luo W, Zhang Y, Kim S-H, Kim D-H, Shinde SS, Li Y-F, Liu Z-P, Jiang Z, Lee J-H (2021) In-Situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat Catal 4:1012–1023

    Article  Google Scholar 

  • Liu H, Liu C, Zong X, Wang Y, Hu Z, Zhang Z (2023) Role of the support effects in single‐atom catalysts. Chem—An Asian J 18:e202201161

    Google Scholar 

  • Mefford JT, Rong X, Abakumov AM, Hardin WG, Dai S, Kolpak AM, Johnston KP, Stevenson KJ (2016) Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat Commun 7:11053

    Article  Google Scholar 

  • Menezes PW, Walter C, Hausmann JN, Beltrán‐Suito R, Schlesiger C, Praetz S, Yu Verchenko V, Shevelkov AV, Driess M (2019) Boosting water oxidation through in situ electroconversion of manganese gallide: an intermetallic precursor approach. Angew Chemie Int Ed 58:16569–16574

    Google Scholar 

  • Menezes PW, Walter C, Chakraborty B, Hausmann JN, Zaharieva I, Frick A, Hauff E, Dau H, Driess M (2021) Combination of highly efficient electrocatalytic water oxidation with selective oxygenation of organic substrates using manganese borophosphates. Adv Mater 33:2004098

    Article  Google Scholar 

  • Möller S, Barwe S, Masa J, Wintrich D, Seisel S, Baltruschat H, Schuhmann W (2020) Online monitoring of electrochemical carbon corrosion in alkaline electrolytes by differential electrochemical mass spectrometry. Angew Chemie Int Ed 59:1585–1589

    Article  Google Scholar 

  • Mondal I, Hausmann JN, Vijaykumar G, Mebs S, Dau H, Driess M, Menezes PW (2022) Nanostructured intermetallic Nickel Silicide (Pre)Catalyst for anodic oxygen evolution reaction and selective dehydrogenation of primary amines. Adv Energy Mater 12:e2200269

    Article  Google Scholar 

  • Mondal I, Menezes PV, Laun K, Diemant T, Al-Shakran M, Zebger I, Jacob T, Driess M, Menezes PW (2023) In-Liquid plasma-mediated manganese oxide electrocatalysts for quasi-industrial water oxidation and selective dehydrogenation. ACS Nano 17:14043–14052

    Article  Google Scholar 

  • Panda C, Menezes PW, Driess M (2018) Nano-Sized inorganic energy-materials by the low-temperature molecular precursor approach. Angew Chemie Int Ed 57:11130–11139

    Article  Google Scholar 

  • Qiu H-J, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M (2015) Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chemie Int Ed 54:14031–14035

    Article  Google Scholar 

  • Rossmeisl J, Logadottir A, Nørskov JK (2005) Electrolysis of water on (Oxidized) metal surfaces. Chem Phys 319:178–184

    Article  Google Scholar 

  • Santoro C, Lavacchi A, Mustarelli P, Di Noto V, Elbaz L, Dekel DR, Jaouen F (2022) What is next in anion-exchange membrane water electrolyzers? Bottlenecks, benefits, and future. Chemsuschem 15:e202200027

    Article  Google Scholar 

  • Scott K (2017) Sustainable and green electrochemical science and technology, 1st ed

    Google Scholar 

  • Staffell I, Scamman D, Velazquez Abad A, Balcombe P, Dodds PE, Ekins P, Shah N, Ward KR (2019) The role of hydrogen and fuel cells in the global energy system. Energy Environ Sci 12:463–491

    Article  Google Scholar 

  • Wan W, Zhao Y, Wei S, Triana CA, Li J, Arcifa A, Allen CS, Cao R, Patzke GR (2021) Mechanistic insight into the active centers of Single/Dual-Atom Ni/Fe-Based oxygen electrocatalysts. Nat Commun 12:5589

    Article  Google Scholar 

  • Wang Q, Huang X, Zhao ZL, Wang M, Xiang B, Li J, Feng Z, Xu H, Gu M (2020) Ultrahigh-Loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J Am Chem Soc 142:7425–7433

    Article  Google Scholar 

  • Wang Q, Zhang Z, Cai C, Wang M, Zhao ZL, Li M, Huang X, Han S, Zhou H, Feng Z, Li L, Li J, Xu H, Francisco JS, Gu M (2021) Single iridium atom doped Ni2P catalyst for optimal oxygen evolution. J Am Chem Soc 143:13605–13615

    Article  Google Scholar 

  • Xu H, Zhao Y, Wang Q, He G, Chen H (2022) Supports promote single-atom catalysts toward advanced electrocatalysis. Coord Chem Rev 451:214261

    Article  Google Scholar 

  • Yan J, Kong L, Ji Y, White J, Li Y, Zhang J, An P, Liu S, Lee S-T, Ma T (2019) Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat Commun 10:2149

    Article  Google Scholar 

  • Yang X-F, Wang A, Qiao B, Li J, Liu J, Zhang T (2013) Single-Atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46:1740–1748

    Article  Google Scholar 

  • Zhai P, Xia M, Wu Y, Zhang G, Gao J, Zhang B, Cao S, Zhang Y, Li Z, Fan Z, Wang C, Zhang X, Miller JT, Sun L, Hou J (2021) Engineering single-atomic ruthenium catalytic sites on defective Nickel-Iron layered double Hydroxide for overall water splitting. Nat Commun 12:4587

    Article  Google Scholar 

  • Zhang J, Liu J, Xi L, Yu Y, Chen N, Sun S, Wang W, Lange KM, Zhang B (2018a) Single-Atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J Am Chem Soc 140:3876–3879

    Article  Google Scholar 

  • Zhang L, Jia Y, Gao G, Yan X, Chen N, Chen J, Soo MT, Wood B, Yang D, Du A, Yao X (2018b) Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4:285–297

    Article  Google Scholar 

  • Zhang F-F, Cheng C-Q, Wang J-Q, Shang L, Feng Y, Zhang Y, Mao J, Guo Q-J, Xie Y-M, Dong C-K, Cheng Y-H, Liu H, Du X-W (2021) Iridium oxide modified with Silver single atom for boosting oxygen evolution reaction in acidic media. ACS Energy Lett 1588–1595

    Google Scholar 

  • Zhang Z, Feng C, Li X, Liu C, Wang D, Si R, Yang J, Zhou S, Zeng J (2021b) In-Situ generated high-valent iron single-atom catalyst for efficient oxygen evolution. Nano Lett 21:4795–4801

    Article  Google Scholar 

  • Zhao D, Zhuang Z, Cao X, Zhang C, Peng Q, Chen C, Li Y (2020) Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem Soc Rev 49:2215–2264

    Article  Google Scholar 

  • Zheng X, Li P, Dou S, Sun W, Pan H, Wang D, Li Y (2021a) Non-Carbon-Supported single-atom site catalysts for electrocatalysis. Energy Environ Sci 14:2809–2858

    Article  Google Scholar 

  • Zheng X, Tang J, Gallo A, Garrido Torres JA, Yu X, Athanitis CJ, Been EM, Ercius P, Mao H, Fakra SC, Song C, Davis RC, Reimer JA, Vinson J, Bajdich M, Cui Y (2021b) Origin of enhanced water oxidation activity in an iridium single atom anchored on NiFe oxyhydroxide catalyst. Proc Natl Acad Sci 118:2101817118

    Article  Google Scholar 

  • Zhou Y, Lu R, Tao X, Qiu Z, Chen G, Yang J, Zhao Y, Feng X, Müllen K (2023) Boosting oxygen electrocatalytic activity of Fe–N–C catalysts by phosphorus incorporation. J Am Chem Soc 145:3647–3655

    Article  Google Scholar 

  • Zhu C, Shi Q, Feng S, Du D, Lin Y (2018) Single-Atom catalysts for electrochemical water splitting. ACS Energy Lett 3:1713–1721

    Article  Google Scholar 

Download references

Acknowledgements

I.M. is thankful to SERB for the Ramanujan fellowship. P.W.M. acknowledges the support from the German Federal Ministry of Education and Research in the framework of the project Catlab (03EW0015A/B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashanth W. Menezes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, I., Menezes, P.W. (2024). Single-Atom Catalysts for Oxygen Evolution Reaction. In: Kumar, A., Gupta, R.K. (eds) Atomically Precise Electrocatalysts for Electrochemical Energy Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-54622-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54622-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54621-1

  • Online ISBN: 978-3-031-54622-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics