Skip to main content

Introduction and Principle of Atomically Precise Electrocatalysts

  • Chapter
  • First Online:
Atomically Precise Electrocatalysts for Electrochemical Energy Applications
  • 62 Accesses

Abstract

Atomically precise nanoclusters (APN) are more useful for detecting the reaction mechanisms and active sites of the electrocatalysis process at the molecular or atomic level. The atomically precise metal nanoclusters are used as efficient catalysts in most electrocatalytic reactions, including hydrogen evolution reactions, electrochemical CO2 reduction reactions, fuel cell reactions, degradation reactions of contaminants, and electrochemical synthesis of ammonia. The various factors influencing the electrocatalytic properties of metal nanoclusters include the core, charge of the metal, metal atom distribution, kinds of protection ligands, substrates, and the detailed structure of the metal nanoclusters. The design of fuel cells is challenging because of the formulation and design of effective electrocatalysts for the slow cathodic oxygen reduction reaction (ORR). Amongst the differently designed electrocatalysts, presently the atomically precise electrocatalysts (APE), like single-atom, multi-atom, and dual-atom clusters, have been emphasized by researchers because of their outstanding effectiveness in atom utilization and catalytic performance. The nanoparticle of metal now captures a vital position in the catalytic activity of electrocatalysis. Therefore, APN shows the properties of metal nanoclusters passivated by ligands and is today considered an effective class of model catalyst that provides great potential in the field of catalysis research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Che G, Lakshmi BB, Martin CR, Fisher ER (1999) Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 15(3):750–758

    Article  Google Scholar 

  • Ding T, Liu X, Tao Z, Liu T, Chen T, Zhang W, Yao T (2021) Atomically precise dinuclear site active toward electrocatalytic CO2 reduction. J Am Chem Soc 143(30):11317–11324

    Article  Google Scholar 

  • Du Y, Xiang J, Ni K, Yun Y, Sun G, Yuan X, Zhu M (2018) Design of atomically precise Au2Pd6 nanoclusters for boosting electrocatalytic hydrogen evolution on MoS2. Inorg Chem Front 5(11):2948–2954

    Article  Google Scholar 

  • Du Y, Sheng H, Astruc D, Zhu M (2019) Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem Rev 120(2):526–622

    Article  Google Scholar 

  • Eftekhari A (2017) Electrocatalysts for hydrogen evolution reaction. Int J Hydrogen Energy 42(16):11053–11077

    Article  Google Scholar 

  • Hernández‐Santos D, González‐García MB, García AC (2002) Metal‐nanoparticles based electroanalysis. Electroanal Int J Devoted Fundam Pract Aspects Electroanal 14(18):1225–1235

    Google Scholar 

  • Hossain S, Hirayama D, Ikeda A, Ishimi M, Funaki S, Samanta A, Negishi Y (2023) Atomically precise thiolate‐protected gold nanoclusters: current status of designability of the structure and physicochemical properties. Aggregate 4(2):1–41, e255

    Google Scholar 

  • Hu Y, Li Z, Li B, Yu C (2022) Recent progress of diatomic catalysts: General design fundamentals and diversified catalytic applications. Small 18(46):1–17

    Article  Google Scholar 

  • Huang ZF, Wang J, Peng Y, Jung CY, Fisher A, Wang X (2017) Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv Energy Mater 7(23):1–21

    Article  Google Scholar 

  • Jiao L, Yan H, Wu Y, Gu W, Zhu C, Du D, Lin Y (2020) When nanozymes meet single-atom catalysis. Angew Chem 132(7):2585–2596

    Article  Google Scholar 

  • Kauffman DR, Alfonso D, Tafen DN, Lekse J, Wang C, Deng X et al (2016) Electrocatalytic oxygen evolution with an atomically precise nickel catalyst. ACS Catal 6(2):1225–1234

    Google Scholar 

  • Kempahanumakkagari S, Vellingiri K, Deep A, Kwon EE, Bolan N, Kim KH (2018) Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 357:105–129

    Article  Google Scholar 

  • Kim JH, Sa YJ, Lim T, Woo J, Joo SH (2022) Steering catalytic selectivity with atomically dispersed metal electrocatalysts for renewable energy conversion and commodity chemical production. Acc Chem Res 55(18):2672–2684

    Article  Google Scholar 

  • Kwak K, Lee D (2018) Electrochemistry of atomically precise metal nanoclusters. Acc Chem Res 52(1):12–22

    Article  Google Scholar 

  • Lee SM, Cheon WS, Lee MG, Jang HW (2023) Coordination environment in single-atom catalysts for high-performance electrocatalytic CO2 reduction. Small Struct 4(6):1–21

    Article  Google Scholar 

  • Li YW, Zhang WJ, Li J, Ma HY, Du HM, Li DC, Xu L (2020) Fe–MOF-derived efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc–air batteries. ACS Appl Mater Interfaces 12(40):44710–44719

    Article  Google Scholar 

  • Li Y, Li S, Nagarajan AV, Liu Z, Nevins S, Song Y, Jin R (2021) Hydrogen evolution electrocatalyst design: turning inert gold into active catalyst by atomically precise nanochemistry. J Am Chem Soc 143(29):11102–11108

    Article  Google Scholar 

  • Li S, Nagarajan AV, Du X, Li Y, Liu Z, Kauffman DR et al (2022) Dissecting critical factors for electrochemical CO2 reduction on atomically precise Au nanoclusters. Angewandte Chemie 134(47):1–19

    Google Scholar 

  • Lin J, Dong Y, Zhang Q, Hu D, Li N, Wang L, Wu T (2015) Interrupted chalcogenide-based zeolite-analogue semiconductor: atomically precise doping for tunable electro-/photoelectrochemical properties. Angew Chem Int Ed 54(17):5103–5107

    Article  Google Scholar 

  • Lu J, Low KB, Lei Y, Libera JA, Nicholls A, Stair PC, Elam JW (2014) Toward atomically precise synthesis of supported bimetallic nanoparticles using atomic layer deposition. Nat Commun 5(1):3264–3284

    Article  Google Scholar 

  • Mohammed-Ibrahim J, Sun X (2019) Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting–a review. J Energy Chem 34:111–160

    Article  Google Scholar 

  • Nagarajan AV, Loevlie DJ, Cowan MJ, Mpourmpakis G (2022) Resolving electrocatalytic imprecision in atomically precise metal nanoclusters. Curr Opin Chem Eng 36:1–15

    Article  Google Scholar 

  • Naveen MH, Khan R, Bang JH (2021) Gold nanoclusters as electrocatalysts: atomic level understanding from fundamentals to applications. Chem Mater 33(19):7595–7612

    Article  Google Scholar 

  • Pedersen A, Barrio J, Li A, Jervis R, Brett DJ, Titirici MM, Stephens IE (2022) Dual-metal atom electrocatalysts: theory, synthesis, characterization, and applications. Adv Energy Mater 12(3):1–91

    Google Scholar 

  • Seong H, Efremov V, Park G, Kim H, Yoo JS, Lee D (2021) Atomically precise gold nanoclusters as model catalysts for identifying active sites for electroreduction of CO2. Angew Chem 133(26):14684–14691

    Article  Google Scholar 

  • Sumner L, Sakthivel NA, Schrock H, Artyushkova K, Dass A, Chakraborty S (2018) Electrocatalytic oxygen reduction activities of thiol-protected nanomolecules ranging in size from Au28 (SR) 20 to Au279 (SR) 84. J Phys Chem C 122(43):24809–24817

    Article  Google Scholar 

  • Sun Y, Cai X, Hu W, Liu X, Zhu Y (2021) Electrocatalytic and photocatalytic applications of atomically precise gold-based nanoclusters. Sci China Chem 64:1065–1075

    Google Scholar 

  • Sun F, Tang Q, Jiang DE (2023) Atomically precise metal nanoclusters as electrocatalysts: from experiment to computational insights. Atomically Precise Nanochem 195–225

    Google Scholar 

  • Sun F, Tang Q (2021) The ligand effect on the interface structures and electrocatalytic applications of atomically precise metal nanoclusters. Nanotechnology 32(35):352001

    Article  Google Scholar 

  • Ting LRL, Pique O, Lim SY, Tanhaei M, Calle-Vallejo F, Yeo BS (2020) Enhancing CO2 electroreduction to ethanol on copper–silver composites by opening an alternative catalytic pathway. ACS Catal 10(7):4059–4069

    Article  Google Scholar 

  • Tomboc GM, Choi S, Kwon T, Hwang YJ, Lee K (2020) Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs. Adv Mater 32(17):1–23

    Article  Google Scholar 

  • Tsai FT, Deng YT, Pao CW, Chen JL, Lee JF, Lai KT, Liaw WF (2020) The HER/OER mechanistic study of an Fe–Co–Ni-based electrocatalyst for alkaline water splitting. J Mater Chem A 8(19):9939–9950

    Article  Google Scholar 

  • Vilian AE, Mohammadi A, Han S, Tiwari JN, Kumar K, Kumar AS et al (2023) Gold nanoclusters supported Molybdenum diselenide-porous carbon composite as an efficient electrocatalyst for selective ultrafast probing of chlorpyrifos-pesticide. Chem Eng J 472:1–11

    Google Scholar 

  • Wang A, Li J, Zhang T (2018a) Heterogeneous single-atom catalysis. Nature Reviews. Chemistry 2(6):65–81

    Google Scholar 

  • Wang Y, Gao P, Wang X, Huo J, Li L, Zhang Y, Su Y (2018b) Study of oxygen evolution reaction on amorphous Au 13@ Ni 120 P 50 nanocluster. Phys Chem Chem Phys 20(21):14545–14556

    Article  Google Scholar 

  • Wang Y, Wang Q, Wu J, Zhao X, Xiong Y, Luo F, Lei Y (2022) Asymmetric atomic sites make a difference: recent progress in electrocatalytic CO2 reduction. Nano Energy 1–15

    Google Scholar 

  • Xu X, Chen Y, Zhou W, Zhu Z, Su C, Liu M, Shao Z (2016) A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv Mater 28(30):6442–6448

    Article  Google Scholar 

  • Xu H, Cheng D, Cao D, Zeng XC (2018) A universal principle for a rational design of single atom electrocatalysts. Nat Catal 1(5):339–348

    Article  Google Scholar 

  • Yan H, Xiang H, Liu J, Cheng R, Ye Y, Han Y, Yao C (2022) The factors dictating properties of atomically precise metal nanocluster electrocatalysts. Small 18(23):1–21

    Article  Google Scholar 

  • Yan L, Li P, Zhu Q, Kumar A, Sun K, Tian S, Sun X (2023) Atomically precise electrocatalysts for oxygen reduction reaction. Chem 9(2):280–342

    Article  Google Scholar 

  • Yang C, Wang Y, Qian L, Al-Enizi AM, Zhang L, Zheng G (2021) Heterogeneous electrocatalysts for CO2 reduction. ACS Appl Energy Mater 4(2):1034–1044

    Article  Google Scholar 

  • Yang D, Wang J, Wang Q, Yuan Z, Dai Y, Zhou C, Yang Y (2022) Electrocatalytic CO2 reduction over atomically precise metal nanoclusters protected by organic ligands. ACS Nano 16(10):15681–15704

    Article  Google Scholar 

  • Yang X, Song W, Zhang T, Huang Z, Zhang J, Ding J, Hu W (2023) Review of emerging atomically precise composite site-based electrocatalysts. Adv Energy Mater 13(37):2301737

    Article  Google Scholar 

  • Yuan D, Wei Z, Han P, Yang C, Huang L, Gu Z, Zheng G (2019) Electron distribution tuning of fluorine-doped carbon for ammonia electrosynthesis. J Mater Chem A 7(28):16979–16983

    Article  Google Scholar 

  • Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3(29):14942–14962

    Article  Google Scholar 

  • Zhang K, Zou R (2021) Advanced transition metal based OER electrocatalysts: current status, opportunities, and challenges. Small 17(37):1–23

    Article  Google Scholar 

  • Zhao S, Jin R, Jin R (2018) Opportunities and challenges in CO2 reduction by gold-and silver-based electrocatalysts: from bulk metals to nanoparticles and atomically precise nanoclusters. ACS Energy Lett 3(2):452–462

    Article  Google Scholar 

  • Zhao S (n.d.) Electrocatalytic applications of atomically precise gold nanoclusters (Doctoral dissertation, Carnegie Mellon University)

    Google Scholar 

  • Zhou M, Guo S (2015) Electrocatalytic interface based on novel carbon nanomaterials for advanced electrochemical sensors. ChemCatChem 7(18):2744–2764

    Article  Google Scholar 

  • Zhu Q, Huang X, Zeng Y, Sun K, Zhou L, Liu Y, Sun X (2021) Controllable synthesis and electrocatalytic applications of atomically precise gold nanoclusters. Nanoscale Adv 3(22):6330–6634

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trinath Biswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswal, T. (2024). Introduction and Principle of Atomically Precise Electrocatalysts. In: Kumar, A., Gupta, R.K. (eds) Atomically Precise Electrocatalysts for Electrochemical Energy Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-54622-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54622-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54621-1

  • Online ISBN: 978-3-031-54622-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics