Skip to main content

An Efficient Authentication and Key Agreement Scheme for CAV Internal Applications

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

The data of applications in connected and autonomous vehicles are important, which is usually collected by service providers to improve their services, such as object detection model. But, wireless communication is susceptible to various kinds of attacks. Thus, the data of the application module needs to be securely shared to the corresponding service provider. However, current schemes are with limited performance while a service provider collects multiple application data at the same time. By adopting signcryption and chaotic map, an efficient authentication and key agreement scheme is proposed, while batch authentication is achieved for efficient message authentication of multiple applications, and the efficient revocation is realized based on Chinese remainder theorem under the assistance of trusted execution environment supported vehicle computing/communication unit. The formal security proof shows that the scheme is secure under the random oracle model, and the experiment results shows that the scheme is more efficient than related schemes and can meet the requirements of CAV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The applications here can also be in-vehicle modules connected by CAN bus.

References

  1. Kim, K., Kim, J.S., Jeong, S., Park, J.H., Kim, H.K.: Cybersecurity for autonomous vehicles: review of attacks and defense. Comput. Secur. 103, 102150 (2021)

    Article  Google Scholar 

  2. Zhang, Q., et al.: Openvdap: an open vehicular data analytics platform for cavs. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 1310–1320 (2018)

    Google Scholar 

  3. Sroka, P., Kliks, A.: Towards edge intelligence in the automotive scenario: a discourse on architecture for database-supported autonomous platooning. J. Commun. Netw. 24(2), 192–208 (2022)

    Article  Google Scholar 

  4. Liu, S., Tang, J., Zhang, Z., Gaudiot, J.: Computer architectures for autonomous driving. Computer 50(8), 18–25 (2017)

    Article  Google Scholar 

  5. He, J., et al.: Cooperative connected autonomous vehicles (CAV): research, applications and challenges. In: 2019 IEEE 27th International Conference on Network Protocols (ICNP), pp. 1–6. IEEE (2019)

    Google Scholar 

  6. Ma, Y., Wang, Z., Yang, H., Yang, L.: Artificial intelligence applications in the development of autonomous vehicles: a survey. IEEE/CAA J. Automatica Sinica 7(2), 315–329 (2020)

    Article  Google Scholar 

  7. Wei, W., Yang, R., Gu, H., Zhao, W., Chen, C., Wan, S.: Multi-objective optimization for resource allocation in vehicular cloud computing networks. IEEE Trans. Intell. Transp. Syst. 23(12), 25536–25545 (2021)

    Article  Google Scholar 

  8. Cui, J., Wei, L., Zhang, J., Xu, Y., Zhong, H.: An efficient message-authentication scheme based on edge computing for vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 20(5), 1621–1632 (2018)

    Article  Google Scholar 

  9. Zhang, Q., Wu, J., Zhong, H., He, D., Cui, J.: Efficient anonymous authentication based on physically unclonable function in industrial internet of things. IEEE Trans. Inf. Forensics Secur. 18, 233–247 (2023)

    Article  Google Scholar 

  10. Li, T., Shang, M., Wang, S., Filippelli, M., Stern, R.: Detecting stealthy cyberattacks on automated vehicles via generative adversarial networks. In: 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), pp. 3632–3637. IEEE (2022)

    Google Scholar 

  11. Zhang, Q., Zhong, H., Cui, J., Ren, L., Shi, W.: Ac4av: a flexible and dynamic access control framework for connected and autonomous vehicles. IEEE Internet Things J. 8(3), 1946–1958 (2021)

    Article  Google Scholar 

  12. Mousavinejad, E., Yang, F., Han, Q.L., Ge, X., Vlacic, L.: Distributed cyber attacks detection and recovery mechanism for vehicle platooning. IEEE Trans. Intell. Transport. Syst. 21, 3821–3834 (2019)

    Article  Google Scholar 

  13. Chattopadhyay, A., Lam, K.Y., Tavva, Y.: Autonomous vehicle: security by design. IEEE Trans. Intell. Transport. Syst. 22, 7015–7029 (2020)

    Article  Google Scholar 

  14. Wazid, M., Das, A.K., Kumar, N., Vasilakos, A.V., Rodrigues, J.J.: Design and analysis of secure lightweight remote user authentication and key agreement scheme in internet of drones deployment. IEEE Internet Things J. 6(2), 3572–3584 (2018)

    Article  Google Scholar 

  15. Bagga, P., Das, A.K., Wazid, M., Rodrigues, J.J., Choo, K.K.R., Park, Y.: On the design of mutual authentication and key agreement protocol in internet of vehicles-enabled intelligent transportation system. IEEE Trans. Veh. Technol. 70(2), 1736–1751 (2021)

    Article  Google Scholar 

  16. Ting, P., Tsai, J., Wu, T.: Signcryption method suitable for low-power IoT devices in a wireless sensor network. IEEE Syst. J. 12(3), 2385–2394 (2018)

    Article  Google Scholar 

  17. Mandal, S., Bera, B., Sutrala, A.K., Das, A.K., Choo, K.R., Park, Y.: Certificateless-signcryption-based three-factor user access control scheme for IoT environment. IEEE Internet Things J. 7(4), 3184–3197 (2020)

    Article  Google Scholar 

  18. Roy, S., Chatterjee, S., Das, A.K., Chattopadhyay, S., Kumari, S., Jo, M.: Chaotic map-based anonymous user authentication scheme with user biometrics and fuzzy extractor for crowdsourcing internet of things. IEEE Internet Things J. 5(4), 2884–2895 (2018)

    Article  Google Scholar 

  19. Qiu, S., Wang, D., Xu, G., Kumari, S.: Practical and provably secure three-factor authentication protocol based on extended chaotic-maps for mobile lightweight devices. IEEE Trans. Depend. Secure Comput. 19(2), 1338–1351 (2022)

    Google Scholar 

  20. Tangade, S., Manvi, S.S., Lorenz, P.: Decentralized and scalable privacy-preserving authentication scheme in vanets. IEEE Trans. Veh. Technol. 67(9), 8647–8655 (2018)

    Article  Google Scholar 

  21. Cui, J., Yu, J., Zhong, H., Wei, L., Liu, L.: Chaotic map-based authentication scheme using physical unclonable function for internet of autonomous vehicle. IEEE Trans. Intell. Transp. Syst. 24(3), 3167–3181 (2023)

    Article  Google Scholar 

  22. Xu, G., Dong, J., Ma, C., Liu, J., Cliff, U.G.O.: A certificateless signcryption mechanism based on blockchain for edge computing. IEEE Internet Things J. (2022)

    Google Scholar 

  23. Bergamo, P., D’Arco, P., De Santis, A., Kocarev, L.: Security of public-key cryptosystems based on Chebyshev polynomials. IEEE Trans. Circuits Syst. I Regul. Pap. 52(7), 1382–1393 (2005)

    Article  MathSciNet  Google Scholar 

  24. Zhang, L.: Cryptanalysis of the public key encryption based on multiple chaotic systems. Chaos Solitons Fractals 37(3), 669–674 (2008)

    Article  MathSciNet  Google Scholar 

  25. Abbasinezhad-Mood, D., Ostad-Sharif, A., Mazinani, S.M., Nikooghadam, M.: Provably-secure escrow-less Chebyshev chaotic map-based key agreement protocol for vehicle to grid connections with privacy protection. IEEE Trans. Ind. Inf. 16, 7287–7294 (2020)

    Article  Google Scholar 

  26. Lu, R., Heung, K., Lashkari, A.H., Ghorbani, A.A.: A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access 5, 3302–3312 (2017)

    Article  Google Scholar 

  27. Zhang, J., Cui, J., Zhong, H., Chen, Z., Liu, L.: PA-CRT: Chinese remainder theorem based conditional privacy-preserving authentication scheme in vehicular ad-hoc networks. IEEE Trans. Depend. Secure Comput. 18, 722–735 (2019)

    Article  Google Scholar 

  28. Xiong, H., Chen, J., Mei, Q., Zhao, Y.: Conditional privacy-preserving authentication protocol with dynamic membership updating for vanets. IEEE Trans. Depend. Secure Comput. 19, 2089–2104 (2020)

    Article  Google Scholar 

  29. Maene, P., Götzfried, J., De Clercq, R., Müller, T., Freiling, F., Verbauwhede, I.: Hardware-based trusted computing architectures for isolation and attestation. IEEE Trans. Comput. 67(3), 361–374 (2017)

    Article  MathSciNet  Google Scholar 

  30. Zhang, Q., Zhong, H., Shi, W., Liu, L.: A trusted and collaborative framework for deep learning in IoT. Comput. Netw. 193, 108055 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported in part by Open Fund of Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, in part by the National Natural Science Foundation of China under Grant 62272002, Grant 62202005, and Grant 62202008, in part by the Excellent Youth Foundation of Anhui Scientific Committee under Grant 2108085J31, in part by the Natural Science Foundation of Anhui Province, China under Grant 2208085QF198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Zhang, Q., Cao, W., Cui, J., Zhong, H. (2024). An Efficient Authentication and Key Agreement Scheme for CAV Internal Applications. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 562. Springer, Cham. https://doi.org/10.1007/978-3-031-54528-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54528-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54527-6

  • Online ISBN: 978-3-031-54528-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics